【題目】已知橢圓C: 的左、右頂點分別為
,
,上、下頂點分別為
,
,四邊形
的面積為
,坐標原點O到直線
的距離為
.
(1)求橢圓C的方程;
(2)若直線l與橢圓C相交于A,B兩點,點P為橢圓C上異于A,B的一點,四邊形為平行四邊形,探究:平行四邊形
的面積是否為定值?若是,求出此定值;若不是,請說明理由.
科目:高中數學 來源: 題型:
【題目】A、B兩人進行一局圍棋比賽,A獲得的概率為0.8,若采用三局兩勝制舉行一次比賽,現采用隨機模擬的方法估計B獲勝的概率.先利用計算器或計算機生成0到9之間取整數值的隨機數,用0,1,2,3,4,5,6,7表示A獲勝;8,9表示B獲勝,這樣能體現A獲勝的概率為0.8.因為采用三局兩勝制,所以每3個隨機數作為一組.
例如,產生30組隨機數:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,據此估計B獲勝的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的方程為
,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的極坐標方程與直線
的直角坐標方程;
(2)設直線與圓
相交于
,
兩點,求圓
在
,
處兩條切線的交點坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2020年新型冠狀病毒肺炎蔓延全國,作為主要戰場的武漢,僅用了十余天就建成了“小湯山”模式的火神山醫院和雷神山醫院,再次體現了中國速度.隨著疫情發展,某地也需要參照“小湯山”模式建設臨時醫院,其占地是出一個正方形和四個以正方形的邊為底邊、腰長為400m的等腰三角形組成的圖形(如圖所示),為使占地面積最大,則等腰三角形的底角為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓經過點
與直線
相切,圓心
的軌跡為曲線
,過點
做直線與曲線
交于不同兩點
,三角形
的垂心為點
.
(1)求曲線的方程;
(2)求證:點在一條定直線上,并求出這條直線的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知三棱柱的側棱和底面垂直,且所有頂點都在球O的表面上,側面
的面積為
.給出下列四個結論:
①若的中點為E,則
平面
;
②若三棱柱的體積為
,則
到平面
的距離為3;
③若,
,則球O的表面積為
;
④若,則球O體積的最小值為
.
當則所有正確結論的序號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】甲、乙兩隊進行排球比賽,采取五局三勝制(當一隊贏得三場勝利時,該隊獲勝,比賽結束).根據前期比賽成績可知在每一局比賽中,甲隊獲勝的概率為,乙隊獲勝的概率為
.若前兩局中乙隊以
領先,則下列說法中錯誤的是( )
A.甲隊獲勝的概率為B.乙隊以
獲勝的概率為
C.乙隊以三比一獲勝的概率為D.乙隊以
獲勝的概率為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
:
(
為參數,
),曲線
:
(
為參數),
與
相切于點
,以坐標原點為極點,
軸的非負半軸為極軸建立極坐標系.
(1)求的極坐標方程及點
的極坐標;
(2)已知直線:
與圓
:
交于
,
兩點,記
的面積為
,
的面積為
,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com