精英家教網 > 高中數學 > 題目詳情

【題目】在直角坐標系中,圓的方程為,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,直線的極坐標方程為

1)求圓的極坐標方程與直線的直角坐標方程;

2)設直線與圓相交于,兩點,求圓,處兩條切線的交點坐標.

【答案】1)圓的極坐標方程為,直線的直角坐標方程為;(2.

【解析】

1)由題意結合直角坐標方程與極坐標方程的轉化公式可得圓的極坐標方程;轉化直線的極坐標方程為,再利用直角坐標方程與極坐標方程的轉化公式即可得直線的直角坐標方程;

2)由題意聯立方程組可得,的坐標,結合直線與圓相切的性質、直線方程的求解即可得兩切線方程,聯立方程即可得解.

1)圓的方程可變為,

所以圓的極坐標方程為;

直線的極坐標方程可變為,

所以直線的直角坐標方程為

2)由題意聯立方程組,解得

不妨設點,,設過,處的切線分別為,,

的圓心為,半徑為,

易得,

由直線的斜率可得直線的斜率,

所以直線的方程為,

可得

所以圓,處兩條切線的交點坐標為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線的方程為,以坐標原點為極點,軸正半軸為極軸建立極坐標系,直線的極坐標方程為,點,點是曲線上的動點,為線段的中點.

1)寫出曲線的參數方程,并求出點的軌跡的直角坐標方程;

2)已知點,直線與曲線的交點為,若線段的中點為,求線段長度.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為

1)求直線與曲線的普通方程;

2)若直線與曲線交于、兩點,點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元五世紀,數學家祖沖之估計圓周率的值的范圍是:,為紀念數學家祖沖之在圓周率研究上的成就,某教師在講授概率內容時要求學生從小數點后的6位數字14,1,5,9,2中隨機選取兩個數字做為小數點后的前兩位(整數部分3不變),那么得到的數字大于3.14的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】公元五世紀,數學家祖沖之估計圓周率的值的范圍是:,為紀念數學家祖沖之在圓周率研究上的成就,某教師在講授概率內容時要求學生從小數點后的6位數字14,1,5,9,2中隨機選取兩個數字做為小數點后的前兩位(整數部分3不變),那么得到的數字大于3.14的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數),以原點為極點,軸的非負半軸為極軸建立極坐標系,直線的極坐標方程為

1)求直線與曲線的普通方程;

2)若直線與曲線交于、兩點,點,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓C 的左、右頂點分別為,,上、下頂點分別為,,四邊形的面積為,坐標原點O到直線的距離為.

1)求橢圓C的方程;

2)若直線l與橢圓C相交于AB兩點,點P為橢圓C上異于A,B的一點,四邊形為平行四邊形,探究:平行四邊形的面積是否為定值?若是,求出此定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)求曲線在點處的切線方程;

2)若,時,恒成立,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)若函數,試研究函數的極值情況;

(2)記函數在區間內的零點為,記,若在區間內有兩個不等實根,證明:.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视