【題目】在平面直角坐標系中,曲線
的方程為
,以坐標原點為極點,
軸正半軸為極軸建立極坐標系,直線
的極坐標方程為
,點
,點
是曲線
上的動點,
為線段
的中點.
(1)寫出曲線的參數方程,并求出點
的軌跡
的直角坐標方程;
(2)已知點,直線
與曲線
的交點為
,若線段
的中點為
,求線段
長度.
科目:高中數學 來源: 題型:
【題目】2020年寒假是特殊的寒假,因為疫情全體學生只能在家進行網上在線學習,為了研究學生在網上學習的情況,某學校在網上隨機抽取120名學生對線上教育進行調查,其中男生與女生的人數之比為11∶13,其中男生30人對于線上教育滿意,女生中有15名表示對線上教育不滿意.
(1)完成列聯表,并回答能否有99%的把握認為對“線上教育是否滿意與性別有關”;
滿意 | 不滿意 | 總計 | |
男生 | |||
女生 | |||
合計 | 120 |
(2)從被調查中對線上教育滿意的學生中,利用分層抽樣抽取8名學生,再在8名學生中抽取3名學生,作線上學習的經驗介紹,其中抽取男生的個數為,求出
的分布列及期望值.
參考公式:附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 0.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】棱臺的三視圖與直觀圖如圖所示.
(1)求證:平面平面
;
(2)在線段上是否存在一點
,使
與平面
所成的角的正弦值為
?若存在,指出點
的位置;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設 (
,
).
(1)若展開式中第5項與第7項的系數之比為3∶8,求k的值;
(2)設(
),且各項系數
,
,
,…,
互不相同.現把這
個不同系數隨機排成一個三角形數陣:第1列1個數,第2列2個數,…,第n列n個數.設
是第i列中的最小數,其中
,且i,
.記
的概率為
.求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)求的單調區間;
(2)設曲線與
軸正半軸的交點為
,曲線在點
處的切線方程為
,求證:對于任意的實數
,都有
;
(3)若方程為實數)有兩個實數根
,
,且
,求證:
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】A、B兩人進行一局圍棋比賽,A獲得的概率為0.8,若采用三局兩勝制舉行一次比賽,現采用隨機模擬的方法估計B獲勝的概率.先利用計算器或計算機生成0到9之間取整數值的隨機數,用0,1,2,3,4,5,6,7表示A獲勝;8,9表示B獲勝,這樣能體現A獲勝的概率為0.8.因為采用三局兩勝制,所以每3個隨機數作為一組.
例如,產生30組隨機數:034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751,據此估計B獲勝的概率為__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某種新型病毒的傳染能力很強,給人們生產和生活帶來很大的影響,所以創新研發疫苗成了當務之急.為此,某藥企加大了研發投入,市場上這種新型冠狀病毒的疫苗的研發費用
(百萬元)和銷量
(萬盒)的統計數據如下:
研發費用 | 2 | 3 | 6 | 10 | 13 | 14 |
銷量 | 1 | 1 | 2 | 2.5 | 4 | 4.5 |
(1)根據上表中的數據,建立關于
的線性回歸方程
(用分數表示);
(2)根據所求的回歸方程,估計當研發費用為1600萬元時,銷售量為多少?
參考公式:,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,圓
的方程為
,以坐標原點
為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的極坐標方程與直線
的直角坐標方程;
(2)設直線與圓
相交于
,
兩點,求圓
在
,
處兩條切線的交點坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com