已知函數.
(1)若,討論函數
在區間
上的單調性;
(2)若且對任意的
,都有
恒成立,求實數
的取值范圍.
(1)參考解析;(2)
解析試題分析:(1)函數,
,所以可得函數
.通過對函數求導,以及對
討論即可得到結論.
(2)由且對任意的
,將
換留下
一個參數,又
恒成立.構建新函數
,通過對函數求導得到
,對
的取值分類討論即可得結論.
試題解析:(1)時,
,則
, 1分
當時,
,所以函數
在區間
上單調遞減; 2分
當時,
,所以函數
在區間
上單調遞增; 3分
當時,存在
,使得
,即
, 4分
時,
,函數
在區間
上單調遞增, 5分
時,
,函數
在區間
上單調遞減. 6分
(2)時,
,
恒成立,等價于
, 7分
記,
則, 8分
當,即
時,
,
在區間
上單調遞減,
所以當時,
,即
恒成立; 10分
當,即
時,記
,則
,
存在,使得
,
此時時,
,
單調遞增,
,即
,
所以,即
,不合題意; 12分
當時,
,不合題意; 13分
綜上,實數
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com