精英家教網 > 高中數學 > 題目詳情

【題目】已知函數f(x)是定義在R上的偶函數,且f(0)=0,當x>0時,
f(x)= .
(1)求函數f(x)的解析式;
(2)解不等式f(x2-1)>-2.

【答案】
(1)解:當x<0時,-x>0,則f(-x)=log (-x).
因為函數f(x)是偶函數,所以f(-x)=f(x)=log (-x),
所以函數f(x)的解析式為

(2)解:因為f(4)=log 4=-2,f(x)是偶函數,
所以不等式f(x2-1)>-2轉化為f(|x2-1|)>f(4).
又因為函數f(x)在(0,+∞)上是減函數,
所以|x2-1|<4,解得- <x<
即不等式的解集為
【解析】本題考查函數解析式的求法,以及根據性質求解不等式的問題。(1)根據函數的奇偶性找到在不同范圍的解析式。(2)根據函數是偶函數把不等式進行轉化,進而根據單調性脫去括號,得到不等式進行求解。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系 中,以 為極點, 軸非負半軸為極軸建立坐標系,已知曲線 的極坐標方程為 ,直線 的參數方程為: 為參數),兩曲線相交于 兩點.
(1)寫出曲線 的直角坐標方程和直線 的普通方程;
(2)若 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數 的最小正周期是 ,若將其圖象向右平移 個單位后得到的圖象關于 軸對稱,則函數 的圖象( )
A.關于直線 對稱
B.關于直線 對稱
C.關于點 對稱
D.關于點 對稱

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】我國古代數學典籍《九章算術》“盈不足”中有一道兩鼠穿墻問題:“今有垣厚十尺,兩鼠對穿,初日各一尺,大鼠日自倍,小鼠日自半,問幾何日相逢?”現用程序框圖描述,如圖所示,則輸出結果n=(
A.4
B.5
C.2
D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】奇函數f(x)的定義域為R,若f(x+1)為偶函數,且f(1)=2,則f(8)+f(5)的值為( )
A.2
B.1
C.-1
D.-2

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系 中,圓 ,圓
(Ⅰ)在以 為極點, 軸正半軸為極軸的極坐標系中,分別寫出圓 的極坐標方程,并求出圓 的交點坐標(用極坐標表示);
(Ⅱ)求出 的公共弦的參數方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知三棱錐 的底面積 是邊長為 的正三角形, 點在側面 內的射影 的垂心,二面角 的平面角的大小為 ,則 的長為( )

A.3
B.
C.
D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,以原點為極點, 軸正半軸為極軸建立極坐標系,并在兩坐標系中取相同的長度單位.已知曲線的極坐標方程為,直線的參數方程為

為參數, 為直線的傾斜角).

(1)寫出直線的普通方程和曲線的直角坐標方程;

(2)若直線與曲線有唯一的公共點,求角的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中山某學校的場室統一使用歐普照明的一種燈管,已知這種燈管使用壽命(單位:月)服從正態分布,且使用壽命不少于個月的概率為,使用壽命不少于個月的概率為.

1)求這種燈管的平均使用壽命;

2)假設一間課室一次性換上支這種新燈管,使用個月時進行一次檢查,將已經損壞的燈管換下(中途不更換),求至少兩支燈管需要更換的概率.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视