【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間
的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作燒開一壺水時間
關于開關旋鈕旋轉的弧度數
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若旋轉的弧度數與單位時間內煤氣輸出量
成正比,那么
為多少時燒開一壺水最省煤氣?
附:對于一組數據,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
科目:高中數學 來源: 題型:
【題目】在直角坐標系xOy中,曲線C1的參數方程為(α為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為
,且在極坐標下點P
.
(1)求曲線C1的普通方程和曲線C2的直角坐標方程;
(2)若曲線C1與曲線C2交于A,B兩點,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】新冠病毒是一種通過飛沫和接觸傳播的變異病毒,為篩查該病毒,有一種檢驗方式是檢驗血液樣本相關指標是否為陽性,對于份血液樣本,有以下兩種檢驗方式:一是逐份檢驗,則需檢驗
次.二是混合檢驗,將其中
份血液樣本分別取樣混合在一起,若檢驗結果為陰性,那么這
份血液全為陰性,因而檢驗一次就夠了;如果檢驗結果為陽性,為了明確這
份血液究竟哪些為陽性,就需要對它們再逐份檢驗,此時
份血液檢驗的次數總共為
次.某定點醫院現取得4份血液樣本,考慮以下三種檢驗方案:方案一,逐個檢驗;方案二,平均分成兩組檢驗;方案三,四個樣本混在一起檢驗.假設在接受檢驗的血液樣本中,每份樣本檢驗結果是陽性還是陰性都是相互獨立的,且每份樣本是陰性的概率為
.
(Ⅰ)求把2份血液樣本混合檢驗結果為陽性的概率;
(Ⅱ)若檢驗次數的期望值越小,則方案越“優”.方案一、二、三中哪個最“優”?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間
的一組數據,且作了一定的數據處理(如表),得到了散點圖(如圖).
1.47 | 20.6 | 0.78 | 2.35 | 0.81 | -19.3 | 16.2 |
表中,
.
(1)根據散點圖判斷,與
哪一個更適宜作燒開一壺水時間
關于開關旋鈕旋轉的弧度數
的回歸方程類型?(不必說明理由)
(2)根據判斷結果和表中數據,建立關于
的回歸方程;
(3)若旋轉的弧度數與單位時間內煤氣輸出量
成正比,那么
為多少時燒開一壺水最省煤氣?
附:對于一組數據,…,
,其回歸直線
的斜率和截距的最小二乘估計分別為
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數),曲線
的參數方程為
(
為參數).
(1)求曲線,
的普通方程;
(2)已知點,若曲線
,
交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面內與兩定點,
連線的斜率之積等于
的點的軌跡,加上
、
兩點所成的曲線為
.若曲線
與
軸的正半軸的交點為
,且曲線
上的相異兩點
、
滿足
.
(1)求曲線的軌跡方程;
(2)求面積
的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,滿足
,則( )
A.函數有2個極小值點和1個極大值點
B.函數有2個極大值點和1個極小值點
C.函數有可能只有一個零點
D.有且只有一個實數,使得函數
有兩個零點
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com