精英家教網 > 高中數學 > 題目詳情

【題目】在直二面角αlβ中,Aα,BβA,B都不在l上,ABα所成角為x,ABβ所成角為y,ABl所成角為z,則cos2x+cos2y+sin2z的值為( 。

A.B.2C.3D.

【答案】B

【解析】

根據題意,先分別作出ABα所成角為x,ABβ所成角為yABl所成角為z,再利用三角函數求解即可.

A、B分別作AClCBDlD,過B作直線平行于l,過C作直線平行于BD,兩直線交于E,連接AD、AC、AE.

αlβ為直二面角,BDβ上,l=αβBDl,故BDα.同理ACβ.

又∠BAD、∠ABC分別為ABα、β所成的角,有∠BAD=x,∠ABC=y.

ECBDECl,ACβ,有AEl,AEBE,∠EBA=z.

cos2x+cos2y+sin2z=.

故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】橢圓C過點M(2,0),且右焦點為F(1,0),過F的直線l與橢圓C相交于A、B兩點.設點P(4,3),記PAPB的斜率分別為k1k2

(1)求橢圓C的方程;

(2)如果直線l的斜率等于-1,求出k1k2的值;

(3)探討k1+k2是否為定值?如果是,求出該定值;如果不是,求出k1+k2的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當時,討論的單調性;

2)若有兩個不同零點,,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的一個焦點與拋物線的焦點重合,且離心率為.

1)求橢圓的標準方程;

2)過焦點的直線與拋物線交于,兩點,與橢圓交于,兩點,滿足,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在①;這兩個條件中任選-一個,補充在下面問題中,然后解答補充完整的題.

中,角的對邊分別為,已知 ,.

(1);

(2)如圖,為邊上一點,,求的面積

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知n為自然數,實數a1,解關于x的不等式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,平面的中點,,.

(Ⅰ)求證:平面;

(Ⅱ)求平面與平面所成銳二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】談祥柏先生是我國著名的數學科普作家,他寫的《數學百草園》、《好玩的數學》、《故事中的數學》等書,題材廣泛、妙趣橫生,深受廣大讀者喜愛.下面我們一起來看《好玩的數學》中談老的一篇文章《五分鐘內挑出埃及分數》:文章首先告訴我們,古埃及人喜歡使用分子為1的分數(稱為埃及分數).如用兩個埃及分數的和表示.100個埃及分數中挑出不同的3個,使得它們的和為1,這三個分數是________.(按照從大到小的順序排列)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】

已知數列滿足:,,其中為實數,為正整數.

)對任意實數,證明:數列不是等比數列;

)證明:當時,數列是等比數列;

)設為實常數),為數列的前項和.是否存在實數,使得對任意正整數,都有?若存在,求的取值范圍;若不存在,說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视