【題目】已知橢圓的中心在原點,短軸長為
,點
在橢圓上.
(1)求橢圓的標準方程;
(2)若斜率為的直線
與橢圓
交于
,
兩點,
為弦
中點,求點
的軌跡方程.
【答案】(1);(2)
.
【解析】試題分析:(1)由橢圓的短軸長可求出的值,將點
代入到橢圓方程可得
的值,進而可得橢圓的標準方程;(2)設弦所在直線的方程為
,A點坐標為
,B點坐標為
,弦的中點坐標為
,聯立直線與橢圓的方程,運用韋達定理和中點坐標公式得
,代入直線得
,故而得到
滿足的關系式,結合點在橢圓內得到
的范圍,從而得最后結果.
試題解析:(1)依題意, ,則設橢圓方程為
;
因為橢圓過,所以
,即
,
所以橢圓方程為.
(2)依題意,設斜率為的弦所在直線的方程為
,A點坐標為
,B點坐標為
,弦的中點坐標為
,則
消去
,得
, ∴
,即
,
, 兩式消掉
,得
;又弦的中點在橢圓內部,所以
;故平行弦中點軌跡方程為:
.
科目:高中數學 來源: 題型:
【題目】橢圓的經過中心的弦稱為橢圓的一條直徑,平行于該直徑的所有弦的中點的軌跡為一條線段,稱為該直徑的共軛直徑,已知橢圓的方程為
.
(1)若一條直徑的斜率為,求該直徑的共軛直徑所在的直線方程;
(2)若橢圓的兩條共軛直徑為和
,它們的斜率分別為
,證明:四邊形
的面積為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,已知圓C經過點A(1,3) ,B(4,2),且圓心在直線l:x-y-1=0上.
(1)求圓C的方程;
(2)設P是圓D:x2+y2+8x-2y+16=0上任意一點,過點P作圓C的兩條切線PM,PN,M,N為切點,試求四邊形PMCN面積S的最小值及對應的點P坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直角坐標系xOy中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ2﹣4ρsinθ+3=0,A、B兩點極坐標分別為(1,π)、(1,0).
(1)求曲線C的參數方程;
(2)在曲線C上取一點P,求|AP|2+|BP|2的最值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】通過隨機詢問110名性別不同的大學生是否愛好某項運動,得到如下的列聯表:
男 | 女 | 總計 | |
愛好 | 40 | 20 | 60 |
不愛好 | 20 | 30 | 50 |
總計 | 60 | 50 | 110 |
由 算得,
.
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
參照附表,得到的正確結論是( )
A.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別有關”
B.在犯錯誤的概率不超過0.1%的前提下,認為“愛好該項運動與性別無關”
C.有99%以上的把握認為“愛好該項運動與性別有關”
D.有99%以上的把握認為“愛好該項運動與性別無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝廠生產一種服裝,每件服裝成本為40元,出廠單價定為60元,該廠為鼓勵銷售商訂購,規定當一次訂購量超過100件時,每多訂購一件,訂購的全部服裝的出廠單價就降低元,根據市場調查,銷售商一次訂購不會超過600件.
(1)設一次訂購件,服裝的實際出廠單價為
元,寫出函數
的表達式;
(2)當銷售商一次訂購多少件服裝時,該廠獲得的利潤最大?其最大利潤是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在 中,
所對的邊分別為
,且
.
(1)求角的大;
(2)若,
,
為
的中點,求
的長.
【答案】(1);(2)
.
【解析】試題分析:(1)由已知,利用正弦定理可得a2=
b2+
c2-2b,再利用余弦定理即可得出cosA,結合A的范圍即可得解A的值.
(2)△ABC中,先由正弦定理求得AC的值,再由余弦定理求得AB的值,△ABD中,由余弦定理求得BD的值.
試題解析:
(1)因為asin A=(
b-c)sin B+(
c-b)·sin C,
由正弦定理得a2=(
b-c)b+(
c-b)c,
整理得a2=
c2-2bc,
由余弦定理得cos A==
=
,
因為A∈(0,π),所以A=.
(2)由cos B=,得sin B=
=
=
,
所以cos C=cos[π-(A+B)]=-cos(A+B)=-=-
,
由正弦定理得b==
=2,
所以CD=AC=1,
在△BCD中,由余弦定理得BD2=()2+12-2×1×
×
=13,
所以BD=.
【題型】解答題
【結束】
21
【題目】已知函數在
處的切線經過點
(1)討論函數的單調性;
(2)若不等式恒成立,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com