精英家教網 > 高中數學 > 題目詳情

【題目】某廠每月生產一種投影儀的固定成本為萬元,但每生產臺,需要加可變成本(即另增加投入)萬元,市場對此產品的月需求量為臺,銷售的收入函數為(萬元),其中是產品售出的數量(單位:百臺).

(1)求月銷售利潤(萬元)關于月產量(百臺)的函數解析式;

(2)當月產量為多少時,銷售利潤可達到最大?最大利潤為多少?

【答案】(1);(2)當月產量為臺時可獲得最大利潤萬元.

【解析】

(1)根據利潤等于銷售收入減去成本,對討論列出方程,即可求出月銷售利潤(萬元)關于月產量(百臺)的函數解析式;

(2)分別求出時利潤的最大值并比較,即可得到銷售利潤的最大值.

(1)當時,投影儀能售出百臺,

利潤函數為

時,只能售出百臺,這時成本為萬元

利潤函數為,

所以

(2)當時,

所以當時,(萬元),

時,函數上單調遞減,

所以(萬元),

所以,當(百臺)時,銷售利潤可達到最大.

答:當月產量為臺時,可獲得最大利潤萬元.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數滿足如下條件:

①函數的最小值為,最大值為9;

③若函數在區間上是單調函數,則的最大值為2

試探究并解決如下問題:

(Ⅰ)求,并求的值;

(Ⅱ)求函數的圖象的對稱軸方程;

(Ⅲ)設是函數的零點,求的值的集合.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各一元二次不等式中,解集為空集的是( 。

A.x+3)(x1)>0B.x+4)(x1)<0

C.x22x+30D.2x23x20

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的多面體中,平面,,,,的中點.

(1)求證:;

(2)求二面角的平面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若,不等式有且只有兩個整數解,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知曲線,曲線,且的焦點之間的距離為,在第一象限的交點為

(1)求曲線的方程和點的坐標

(2)若過點且斜率為的直線的另一個交點為,過點垂直的直線與的另一個交點為,試求取值范圍

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】AB,C,D為平面內的四點,且A(1,3),B(2,–2),C(4,1).

(1)若,求D點的坐標;

(2)設向量,若k+3平行,求實數 的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知是定義在上的奇函數.

1)若,求的值;

2)若是函數的一個零點,求函數在區間的值域.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】有以下判斷:①表示同一函數;②函數的圖像與直線最多有一個交點;③不是函數;④若點的圖像上,則函數的圖像必過點.其中正確的判斷有___________

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视