精英家教網 > 高中數學 > 題目詳情

【題目】一個不透明的袋子中裝有個形狀相同的小球,分別標有不同的數字,現從袋中隨機摸出個球,并計算摸出的這個球上的數字之和,記錄后將小球放回袋中攪勻,進行重復試驗.記事件為“數字之和為”.試驗數據如下表

(1)如果試驗繼續下去,根據上表數據,出現“數字之和為的頻率將穩定在它的概率附近.試估計“出現數字之和為”的概率,并求的值;

(2)在(1)的條件下,設定一種游戲規則:每次摸球,若數字和為,則可獲得獎金元,否則需交元.某人摸球次,設其獲利金額為隨機變量元,求的數學期望和方差.

【答案】(1),;(2),.

【解析】試題分析:(1)由數據表可知,當試驗次數增加時,頻率穩定在附近,所以可以估計數字和為的概率,根據概率可求得的值;(2)根據題意, 根據二項分布的期望與方差公式可計算的值.

試題解析:(1)由數據表可知,當試驗次數增加時,頻率穩定在0.33附近,所以可以估計“出現數字之和為7”的概率為,

,A事件包含兩種結果,則有, ,

(2)設表示3次摸球中A事件發生的次數,則,,

,

,

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲乙丙三輛汽車在不同速度下的燃油效率情況,下列敘述中正確的是( )

A. 消耗1升汽油,乙車最多可行駛5千米

B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多

C. 甲車以80千米/小時的速度1小時,消耗10升汽油

D. 某城市機動車最高限速80千米/小時,相同條件下,在該市用丙車比乙車更省油.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(1)討論的零點個數;

(2)當時,求證恒成立.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知向量 互相垂直,其中
(1)求sinθ和cosθ的值;
(2)若 , 求cosφ的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,設橢圓)的左、右焦點分別為,點在橢圓上, , 的面積為.

(Ⅰ)求該橢圓的標準方程;

(Ⅱ)是否存在圓心在軸上的圓,使圓在軸的上方與橢圓

有兩個交點,且圓在這兩個交點處的兩條切線相互垂直并分別過不同的焦點?若存在,求圓的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=Asin(ωx+)(其中A>0,||< ,ω>0)的圖象如圖所示,
(1)求函數f(x)的解析式;
(2)若關于x的方程f(x)+ cos2x﹣ sin2x﹣k=0在[0, ]上只有一解,求k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】現有0,1,2,3,4,5六個數字.
(1)用所給數字能夠組成多少個四位數?
(2)用所給數字可以組成多少個沒有重復數字的五位數?
(3)用所給數字可以組成多少個沒有重復數字且比3142大的數?(最后結果均用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在六面體中,平面平面, 平面 , .且, .

(1)求證: 平面;

(2)求銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=xlnx,g(x)=(﹣x2+ax﹣3)ex(其中a實數,e是自然對數的底數).
(1)當a=5時,求函數y=g(x)在點(1,e)處的切線方程;
(2)求f(x)在區間[t,t+2](t>0)上的最小值;
(3)若存在x1 , x2∈[e1 , e](x1≠x2),使方程g(x)=2exf(x)成立,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视