精英家教網 > 高中數學 > 題目詳情

已知定義域為R的函數f(x)=是奇函數.
(1)求a,b的值.
(2)用定義證明f(x)在(-∞,+∞)上為減函數.
(3)若對于任意t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求k的范圍.

(1) a=1,b=1   (2)見解析   (3) k<-

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知二次函數在區間 上有最大值,最小值.
(1)求函數的解析式;
(2)設.若時恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數f(x)=x3.
(1)判斷f(x)的奇偶性;(2)求證:f(x)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知二次函數f(x)滿足條件f(0)=1,f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在區間[-1,1]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,
(1)若,試判斷并證明函數的單調性;
(2)當時,求函數的最大值的表達式

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

為正實數,函數.
(1)若,求的取值范圍;(2)求的最小值;
(3)若,求不等式的解集.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某廠生產某種產品(百臺),總成本為(萬元),其中固定成本為2萬元, 每生產1百臺,成本增加1萬元,銷售收入(萬元),假定該產品產銷平衡。
(1)若要該廠不虧本,產量應控制在什么范圍內?
(2)該廠年產多少臺時,可使利潤最大?
(3)求該廠利潤最大時產品的售價。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知f(x)是偶函數,且f(x)在[0,+∞)上是增函數,若x∈時,不等式f(1+xlog2a)≤f(x-2)恒成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知奇函數f(x)在定義域[-2,2]上單調遞減,求滿足f(1-m)+f(1-m2)<0的實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视