【題目】定義:若函數的圖像經過變換
后所得的圖像對應的函數與
的值域相同,則稱變換
是
的同值變換,下面給出了四個函數與對應的變換:
①將函數
的圖像關于
軸作對稱變換;
②將函數
的圖像關于
軸作對稱變換;
③將函數
的圖像關于點(-1,1)作對稱變換;
④將函數
的圖像關于點(-1,0)作對稱變換;
其中是
的同值變換的有_______.(寫出所有符合題意的序號)
科目:高中數學 來源: 題型:
【題目】如圖,在四邊形中,
,
,四邊形
為矩形,且
平面
,
.
(1)求證:平面
;
(2)點在線段
上運動,當點
在什么位置時,平面
與平面
所成銳二面角最大,并求此時二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校象棋社團組織中國象棋比賽,采用單循環賽制,即要求每個參賽選手必須且只須和其他選手各比賽一場,勝者得分,負者得
分,平局兩人各得
分.若冠軍獲得者得分比其他人都多,且獲勝場次比其他人都少,則本次比賽的參賽人數至少為
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,其中
.
(1)令,判斷函數
的奇偶性,并說明理由;
(2)令,
的最大值為A,函數
在區間
上單調遞增函數,求
的取值范圍;
(3)令,將函數
的圖像向左平移
個單位,再向上平移1個單位,得到函數
的圖像,對任意
,求
在區間
上零點個數的所有可能值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若存在常數,使得數列
滿足
對一切
恒成立,則稱
為可控數列,
.
(1)若,
,問
有多少種可能?
(2)若是遞增數列,
,且對任意的
,數列
,
,
成等差數列,判斷
是否為可控數列?說明理由;
(3)設單調的可控數列的首項
,前
項和為
,即
.問
的極限是否存在,若存在,求出
與
的關系式;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的數列的前
項和為
且滿足:
(1)求數列的通項公式;
(2)設求
的值;
(3)是否存在大于2的正整數使得
?若存在,求出所有符合條件的
若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)若是函數
的一個極值點,試求
的單調區間;
(2)若且
,是否存在實數a,使得
在區間
上的最大值為4?若存在,求出實數a的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,兩鐵路線垂直相交于站,若已知
千米,甲火車從
站出發,沿
方向以
千米
小時的速度行駛,同時乙火車從
站出發,沿
方向,以
千米
小時的速度行駛,至
站即停止前行(甲車扔繼續行駛)(兩車的車長忽略不計).
(1)求甲、乙兩車的最近距離(用含的式子表示);
(2)若甲、乙兩車開始行駛到甲,乙兩車相距最近時所用時間為小時,問
為何值時
最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知,其中
.
(1)若,寫出
的單調區間:
(2)若函數恰有三個不同的零點,且這些零點之和為-2,求a、b的值;
(3)若函數在
上有四個不同零點
,求
的最大值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com