【題目】設橢圓的左、右焦點分別為
,
,上頂點為
,過點
與
垂直的直線交
軸負半軸于點
,且
.
(1)求橢圓的方程;
(2)過橢圓的右焦點
作斜率為1的直線
與橢圓
交于
兩點,試在
軸上求一點
,使得以
,
為鄰邊的平行四邊形是菱形.
科目:高中數學 來源: 題型:
【題目】某購物網站對在7座城市的線下體驗店的廣告費指出萬元和銷售額
萬元的數據統計如下表:
城市 | A | B | C | D | E | F | G |
廣告費支出 | 1 | 2 | 4 | 6 | 11 | 13 | 19 |
銷售額 | 19 | 32 | 40 | 44 | 52 | 53 | 54 |
(1)若用線性回歸模型擬合y與x關系,求y關于x的線性回歸方程.
(2)若用對數函數回歸模型擬合y與x的關系,可得回歸方程,經計算對數函數回歸模型的相關指數約為0.95,請說明選擇哪個回歸模型更合適,并用此模型預測A城市的廣告費用支出8萬元時的銷售額.
參考數據:,
,
,
,
,
.
參考公式:,
相關指數:(注意:
與
公式中的相似之處)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,
,
,
,點
在
上,且
,將
沿
折起,使得平面
平面
(如圖),
為
中點.
(Ⅰ)求證:平面
;
(Ⅱ)求四棱錐的體積;
(Ⅲ)在線段上是否存在點
,使得
平面
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題:
①若將一組樣本數據中的每個數據都加上同一個常數后,則樣本的方差不變;
②在殘差圖中,殘差點分布的帶狀區域的寬度越狹窄,其模型擬合的精度越高;
③若兩個變量間的線性相關關系越強,則相關系數的值越接近于1;
④對分類變量與
的隨機變量
的觀測值
來說,
越小,判斷“
與
有關系”的把握越大.
其中正確的命題序號是( )
A.①②③B.①②C.①③④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
、
,橢圓的離心率為
,過橢圓
的左焦點
,且斜率為
的直線
,與以右焦點
為圓心,半徑為
的圓
相切.
(1)求橢圓的標準方程;
(2)線段是橢圓
過右焦點
的弦,且
,求
的面積的最大值以及取最大值時實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l:kx-y+1+2k=0(k∈R).
(1)證明:直線l過定點;
(2)若直線不經過第四象限,求k的取值范圍;
(3)若直線l交x軸負半軸于A,交y軸正半軸于B,△AOB的面積為S(O為坐標原點),求S的最小值并求此時直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某民航部門統計的2019年春運期間12個城市售出的往返機票的平均價格以及相比上年同期變化幅度的數據統計圖表如圖所示,根據圖表,下面敘述不正確的是( )
A. 同去年相比,深圳的變化幅度最小且廈門的平均價格有所上升
B. 天津的平均價格同去年相比漲幅最大且2019年北京的平均價格最高
C. 2019年平均價格從高到低居于前三位的城市為北京、深圳、廣州
D. 同去年相比,平均價格的漲幅從高到低居于前三位的城市為天津、西安、南京
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,
是橢圓短軸的一個頂點,且
是面積為
的等腰直角三角形.
(1)求橢圓的標準方程;
(2)已知直線:
與橢圓
交于不同的
,
兩點,若橢圓
上存在點
,使得四邊形
恰好為平行四邊形,求直線
與坐標軸圍成的三角形面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線的參數方程是
(
為參數),以坐標原點為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程是
.
(1)求曲線與
交點的極坐標;
(2)、
兩點分別在曲線
與
上,當
最大時,求
的面積(
為坐標原點)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com