精英家教網 > 高中數學 > 題目詳情

【題目】如圖,在直角梯形中,,, ,,上,且,將沿折起,使得平面平面(如圖),中點.

(Ⅰ)求證:平面;

(Ⅱ)求四棱錐的體積;

(Ⅲ)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由.

【答案】(Ⅰ)見解析(Ⅱ)(Ⅲ)見解析

【解析】

I)證明DGAE,再由面面垂直的性質可得到證明;(II)分別計算DG和梯形ABCE的面積,即可得棱錐體積;(III)過點CCFAEAB于點F,過點FFPADDB于點P,連接PC,可證平面PCF∥平面ADE,故CP∥平面ADE,根據PFAD計算的值.

(Ⅰ)證明:因為中點,,

所以.

因為平面平面,

平面平面,平面,

所以平面

(Ⅱ)在直角三角形中,易求,

所以四棱錐的體積為

(Ⅲ) 過點C于點,則

過點于點,連接,

又因為,平面平面,

所以平面

同理平面

又因為,

所以平面平面

因為平面 ,

所以平面

所以在上存在點,使得平面,且

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,.

)求函數的單調區間;

)若對任意的,總存在,使得成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是某手機商城2018年華為、蘋果、三星三種品牌的手機各季度銷量的百分比堆積圖(如:第三季度華為銷量約占,三星銷量約占,蘋果銷量約占),根據該圖,以下結論中一定正確的是( )

A. 四個季度中,每季度三星和蘋果總銷量之和均不低于華為的銷量

B. 蘋果第二季度的銷量小于第三季度的銷量

C. 第一季度銷量最大的為三星,銷量最小的為蘋果

D. 華為的全年銷量最大

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

(Ⅰ)若曲線在點處的切線與x軸平行,求a的值;

(Ⅱ)若處取得極大值,求a的取值范圍;

(Ⅲ)當a=2時,若函數有3個零點,求m的取值范圍.(只需寫出結論)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知復數z滿足|z|,z的實部大于0z2的虛部為2.

1)求復數z;

2)設復數z,z2,zz2之在復平面上對應的點分別為A,B,C,求(的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】l為曲線C在點處的切線.

1)求l的方程;

2)證明:除切點之外,曲線C在直線l的下方;

3)求證:(其中,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】1)已知是虛數單位)是關于的方程的根,、,求的值;

2)已知是虛數單位)是關于的方程的一個根,、,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓的左、右焦點分別為,,上頂點為,過點垂直的直線交軸負半軸于點,且.

(1)求橢圓的方程;

(2)過橢圓的右焦點作斜率為1的直線與橢圓交于兩點,試在軸上求一點,使得以,為鄰邊的平行四邊形是菱形.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列滿足為常數,,,),給出下列四個結論:①若數列是周期數列,則周期必為2:②若,則數列必是常數列:③若,則數列是遞增數列:④若,則數列是有窮數列,其中,所有錯誤結論的序號是________.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视