精英家教網 > 高中數學 > 題目詳情
已知數列各項均為正數,其前項和滿足
(1)證明:為等差數列
(2)令,記的前項和為,求證:
解:(1)

兩式相減得
整理得
(常數)

,解得
是以1為首項1為公差的等差數列   6分
(2)方法一、由(1)知

即證:
,

為單調遞增函數,
單調遞減函數;
取得極大值,也取得最大值。


時,令,得





,有
故結論成立。   13分
方法二:由(1)知
時,成立,
時,即證:

即證:


時,容易證明單減,

單減,
結論成立    13分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知數列中,,其前項和滿足,令
(Ⅰ)求數列的通項公式;
(Ⅱ)令,求證:
① 對于任意正整數,都有;
② 對于任意的,均存在,使得時,

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本小題滿分14分)
已知等差數列的公差為,且,數列的前項和為,且
(1)求數列,的通項公式;
(2)記= 求證:數列的前項和 。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知是等差數列,_______.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

...,,...是坐標平面上的一列圓,它們的圓心都在x軸的正半軸上,且都與直線y=x相切,對每一個正整數n,圓都與圓相互外切,以表示的半徑,已知為遞增數列.

(Ⅰ)證明:為等比數列;
(Ⅱ)設=1,求數列錯誤!不能通過編輯域代碼創建對象。的前n項和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

等差數列的前n項和為,則該數列的公差d=      。

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

若由數列
“Z數列”
(1)在數列,試判斷數列是否為“Z數列”;
(2)若數列是“Z數列”,;
(3)若數列是“Z數列”,設

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知數列的通項公式為,則數列成等比數列是數列的通項公式為的( ▲ )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

某人為了觀看2010年南非世界杯,2004年起,每年5月10日到銀行存入m元定期儲蓄,若年利率為r且保持不變,并約定每年到期存款均自動轉為新的一年定期,到2010年5月10日將所有存款和利息全部取回,則可取回錢的總數(元)為(   )
A.m(1+r)6B.m(1+r)7
C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视