【題目】已知函數在
處取得極值.
(1)求函數的單調區間;
(2)若函數在
上恰有兩個不同的零點,求實數
的取值范圍.
【答案】(1)f(x)在(-∞,-1)遞減;在(-1,+∞)遞增;(2).
【解析】試題分析:(1)求出函數的導數,得到關于的方程,求出
,解關于導函數的不等式,求出函數的單調區間即可;
(2)問題等價于在[-2,2]上恰有兩個不同的實根.令g(x)=xex+x2+2x,求出函數的單調性求出g(x)的最小值,從而求出m的范圍即可.
試題解析:
(1)f'(x)=ex+xex+2ax+2,
∵f(x)在x=1處取得極值, ∴f'(-1)=0,解得a=1.經檢驗a=1適合,
∴f(x)=xex+x2+2x+1,f'(x)=(x+1)(ex+2),
當x∈(-∞,-1)時,f'(x)<0,∴f(x)在(-∞,-1)遞減;
當x∈(-1+∞)時,f'(x)>0,∴f(x)在(-1,+∞)遞增.
(2)函數y=f(x)-m-1在[-2,2]上恰有兩個不同的零點,
等價于xex+x2+2x-m=0在[-2,2]上恰有兩個不同的實根,
等價于xex+x2+2x=m在[-2,2]上恰有兩個不同的實根.
令g(x)=xex+x2+2x,∴g'(x)=(x+1)(ex+2),
由(1)知g(x)在(-∞,-1)遞減; 在(-1,+∞)遞增.
g(x)在[-2,2]上的極小值也是最小值; . 又
,g(2)=8+2e2>g(-2), ∴
,即
.
科目:高中數學 來源: 題型:
【題目】已知橢圓中心在原點,焦點在坐標軸上,直線
與橢圓
在第一象限內的交點是
,點
在
軸上的射影恰好是橢圓
的右焦點
,橢圓
另一個焦點是
,且
.
(1)求橢圓的方程;
(2)直線過點
,且與橢圓
交于
兩點,求
的內切圓面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
,直線
:
.
(1)若直線與拋物線
相切,求直線
的方程;
(2)設,直線
與拋物線
交于不同的兩點
,
,若存在點
,滿足
,且線段
與
互相平分(
為原點),求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線:
上一點
到其焦點
的距離為5.
(1)求與
的值;
(2)設動直線與拋物線
相交于
,
兩點,問:在
軸上是否存在與
的取值無關的定點
,使得
?若存在,求出點
的坐標;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,用一平面去截球,所得截面面積為
,球心
到截面的距離為3,
為截面小圓圓心,
為截面小圓的直徑.
(1)計算球的表面積和體積;
(2)若是截面小圓上一點,
,
分別是線段
和
的中點,求異面直線
與
所成的角(結果用反三角表示).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某產品的銷售額與廣告費用
之間的關系如下表:
| 0 | 1 | 2 | 3 | 4 |
| 10 | 15 | 30 | 35 |
若根據表中的數據用最小二乘法求得對
的回歸直線方程為
,則下列說法中錯誤的是( )
A.產品的銷售額與廣告費用成正相關
B.該回歸直線過點
C.當廣告費用為10萬元時,銷售額一定為74萬元
D.的值是20
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com