精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}是首項為正數的等差數列,a1a2=3,a2a3=15.
(1)求數列{an}的通項公式;
(2)設bn=(an+1)2 ,求數列{bn}的前n項和Tn

【答案】
(1)解:設數列{an}的公差為d,

因為a1a2=3,a2a3=15.

解得a1=1,d=2,所以an=2n﹣1


(2)解:由(1)知bn=(an+1)2 =2n22n4=n4n

Tn=141+242+343+…+n4n

4Tn=142+243+…+(n﹣1)4n+n4n+1,

兩式相減,得﹣3Tn=41+42+43+…+4n﹣n4n+1

= ﹣n4n+1= ,

所以Tn=


【解析】(1)設數列{an}的公差為d,由a1a2=3,a2a3=15.解得a1=1,d=2,即可得an=2n﹣1.(2)由(1)知bn=(an+1)2 =2n22n4=n4n , 利用錯位相減法求和即可

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在x軸上的橢圓的一個頂點坐標為(0,1),其離心率為
(1)求橢圓的標準方程;
(2)橢圓上一點P滿足∠F1PF2=60°,其中F1 , F2為橢圓的左右焦點,求△F1PF2的面積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解關于x的不等式ax2﹣(a+1)x+1<0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖是我國2009年至2015年生活垃圾無害化處理量(單位:億噸)的折線圖.
(Ⅰ)由折線圖看出,可用線性回歸模型擬合y與t的關系,請用相關系數加以說明;
(Ⅱ)建立y關于t的回歸方程(系數精確到0.01),預測2017年我國生活垃圾無害化處理量.
參考數據: yi=9.32, tiyi=40.17, =0.55, ≈2.646.
參考公式:相關系數r= =
回歸方程 = + t中斜率和截距的最小二乘估計公式分別為: = , = t.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數, ,其中是然對數底數.

(1)若函數有兩個不同的極值點, ,求實數的取值范圍;

(2)當時,求使不等式在一切實數上恒成立的最大正整數

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】PM2.5是指懸浮在空氣中的空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據現行國家標準GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75毫克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.從某自然保護區2012年全年每天的PM2.5監測值數據中隨機地抽取10天的數據作為樣本,監測值頻數如表所示:

PM2.5日均值
(微克/立方米)

[25,35]

(35,45]

(45,55]

(55,65]

(65,75]

(75,85]

頻數

3

1

1

1

1

3


(1)從這10天的PM2.5日均值監測數據中,隨機抽取3天,求恰有1天空氣質量達到一級的概率;
(2)從這10天的數據中任取3天數據,記ξ表示抽到PM2.5監測數據超標的天數,求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質量狀況,則一年(按366天算)中平均有多少天的空氣質量達到一級或二級.(精確到整數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】.已知函數

(1)當時,求曲線在點處的切線方程;

(2)求函數的極值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y=x+sin|x|,x∈[﹣π,π]的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了得到函數y=sin(2x﹣ ),x∈R的圖象,只需將函數y=sin2x,x∈R的圖象上所有的點(
A.向左平行移動 個單位長度
B.向右平行移動 個單位長度
C.向左平行移動 個單位長度
D.向右平行移動 個單位長度

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视