【題目】PM2.5是指懸浮在空氣中的空氣動力學當量直徑小于或等于2.5微米的顆粒物,也稱為可入肺顆粒物,根據現行國家標準GB3095﹣2012,PM2.5日均值在35微克/立方米以下空氣質量為一級;在35微克/立方米~75毫克/立方米之間空氣質量為二級;在75微克/立方米以上空氣質量為超標.從某自然保護區2012年全年每天的PM2.5監測值數據中隨機地抽取10天的數據作為樣本,監測值頻數如表所示:
PM2.5日均值 | [25,35] | (35,45] | (45,55] | (55,65] | (65,75] | (75,85] |
頻數 | 3 | 1 | 1 | 1 | 1 | 3 |
(1)從這10天的PM2.5日均值監測數據中,隨機抽取3天,求恰有1天空氣質量達到一級的概率;
(2)從這10天的數據中任取3天數據,記ξ表示抽到PM2.5監測數據超標的天數,求ξ的分布列;
(3)以這10天的PM2.5日均值來估計一年的空氣質量狀況,則一年(按366天算)中平均有多少天的空氣質量達到一級或二級.(精確到整數)
【答案】
(1)解:由表格可知:這10天的PM2.5日均值監測數據中,只有3天達到一級.
∴隨機抽取3天,恰有1天空氣質量達到一級的概率P= =
(2)解:由題意可得ξ=0,1,2,3.
則P(ξ=3)= =
,P(ξ=2)=
=
,P(ξ=1)=
=
,P(ξ=0)=
=
.
所以其分布列為:
ξ | 0 | 1 | 2 | 3 |
P(ξ) |
(3)解:一年(按366天算)中空氣質量達到一級或二級的概率為P=0.7,
一年(按366天算)中空氣質量達到一級或二級的天數為η,則η~B(366,0.7),
∴Eη=366×0.7=256.2≈256,
∴一年(按366天算)中平均有256天的空氣質量達到一級或二級
【解析】(1)由表格可知:這10天的PM2.5日均值監測數據中,只有3天達到一級,設“達到一級”為事件A,若隨機抽取3天,恰有1天空氣質量達到一級的概率,利用二項分布即可得.(2)利用“超幾何分布”即可得出;(3)由表格可知:這10天的PM2.5日均值監測數據中,只有3天達到一級,只有4天達到二級,因此這10天空氣質量達到一級或二級的概率,利用數學期望計算公式即可得出.
科目:高中數學 來源: 題型:
【題目】函數y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則 +
的最小值為( )
A.3+2
B.3+2
C.7
D.11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是首項為正數的等差數列,a1a2=3,a2a3=15.
(1)求數列{an}的通項公式;
(2)設bn=(an+1)2 ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓與坐標軸交于
(如圖).
(1)點是圓
上除
外的任意點(如圖1),
與直線
交于不同的兩點
,求
的最小值;
(2)點是圓
上除
外的任意點(如圖2),直線
交
軸于點
,直線
交
于點
.設
的斜率為
的斜率為
,求證:
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為﹣3.
(1)求f(x)的解析式;
(2)求過點A(2,2)的切線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設a∈R,函數f(x)=x|x﹣a|+2x.
(1)若a=3,求函數f(x)在區間[0,4]上的最大值;
(2)若存在a∈(2,4],使得關于x的方程f(x)=tf(a)有三個不相等的實數解,求實數t的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com