【題目】已知函數.
(1)當時,求函數
的值域;
(2)如果對任意的,不等式
恒成立,求實數
的取值范圍.
【答案】(1);(2)
.
【解析】
(1)利用配方法化簡函數,根據函數的定義域,換元得到t=∈[0,2],由二次函數的性質,即可求出函數的值域;(2)先利用對數運算化簡不等式,換元,再通過分離參數法,轉化為最值問題,利用基本不等式求出最值,即可求出實數
的取值范圍.
(1)h(x)=(4-2)·
=-2(
-1)2+2,
因為x∈[1,4],所以t=∈[0,2],
,
故函數h(x)的值域為[0,2].
(2)由f(x2)·f()>k·g(x),
得(3-4)(3-
)>k·
,
令,因為x∈[1,4],所以t=
∈[0,2],
所以(3-4t)(3-t)>k·t對一切t∈[0,2]恒成立,
①當t=0時,k∈R;
②當t∈(0,2]時,恒成立,
即,
因為,當且僅當
,即
時取等號,
所以的最小值為-3.所以k<-3.
綜上,實數k的取值范圍為(-∞,-3).
科目:高中數學 來源: 題型:
【題目】已知函數,
.
(1)當a=2時,求函數g(x)的零點;
(2)若函數g(x)有四個零點,求a的取值范圍;
(3)在(2)的條件下,記g(x)的四個零點分別為,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場銷售價與上市時間的關系用圖(1)的一條折線表示;西紅柿的種植成本與上市時間的關系用圖(2)的拋物線段表示.
(1)寫出圖(1)表示的市場售價與時間的函數關系式寫出圖(2)表示的種植成本與時間的函數關系式
(2)認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?(注:市場售價和種植成本的單位:元/kg,時間單位:天.)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次體能測試中,某研究院對該地區甲、乙兩學校做抽樣調查,所得學生的測試成績如下表所示:
(1)將甲、乙兩學校學生的成績整理在所給的莖葉圖中,并分別計算其平均數;
(2)若在乙學校被抽取的10名學生中任選3人檢測肺活量,求被抽到的3人中,至少2人成績超過80分的概率;
(3)以甲學校的體能測試情況估計該地區所有學生的體能情況,則若從該地區隨機抽取4名學生,記測試成績在80分以上(含80分)的人數為,求
的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知雙曲線的左,右焦點分別為
,若雙曲線上存在點
,使
,則該雙曲線的離心率
范圍為( )
A. (1,1) B. (1,1
) C. (1,1
] D. (1,1
]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若
,則稱
為
的“不動點”;若
,則稱
為
的“穩定點”.函數
的“不動點”和“穩定點”的集合分別記為
和
,即
,
.
()設函數
,求集合
和
.
()求證:
.
()設函數
,且
,求證:
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com