【題目】為了拓展城市的旅游業,實現不同市區間的物資交流,政府決定在市與
市之間建一條直達公路,中間設有至少8個的偶數個十字路口,記為
,現規劃在每個路口處種植一顆楊樹或者木棉樹,且種植每種樹木的概率均為
.
(1)現征求兩市居民的種植意見,看看哪一種植物更受歡迎,得到的數據如下所示:
A市居民 | B市居民 | |
喜歡楊樹 | 300 | 200 |
喜歡木棉樹 | 250 | 250 |
是否有的把握認為喜歡樹木的種類與居民所在的城市具有相關性;
(2)若從所有的路口中隨機抽取4個路口,恰有個路口種植楊樹,求
的分布列以及數學期望;
(3)在所有的路口種植完成后,選取3個種植同一種樹的路口,記總的選取方法數為,求證:
.
附:
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
【答案】(1)沒有(2)分布列見解析,(3)證明見解析
【解析】
(1)根據公式計算卡方值,再對應卡值表判斷..
(2)根據題意,隨機變量的可能取值為0,1,2,3,4,分別求得概率,寫出分布列,根據期望公式求值.
(3)因為至少8個的偶數個十字路口,所以,即
.要證
,即證
,根據組合數公式,即證
;易知有
.成立.設
個路口中有
個路口種植楊樹,下面分類討論①當
時,由
論證.②當
時,由
論證.③當
時,
,設
,再論證當
時,
取得最小值即可.
(1)本次實驗中,,
故沒有99.9%的把握認為喜歡樹木的種類與居民所在的城市具有相關性.
(2)依題意,的可能取值為0,1,2,3,4,
故,
,
0 | 1 | 2 | 3 | 4 | |
故.
(3)∵,∴
.要證
,即證
;
首先證明:對任意,有
.
證明:因為,所以
.
設個路口中有
個路口種植楊樹,
①當時,
,
因為,所以
,
于是.
②當時,
,同上可得
③當時,
,設
,
當時,
,
顯然,當
即
時,
,
當即
時,
,
即;
,
因此,即
.
綜上,,即
.
科目:高中數學 來源: 題型:
【題目】為了了解一個智力游戲是否與性別有關,從某地區抽取男女游戲玩家各200請客,其中游戲水平分為高級和非高級兩種.
(1)根據題意完善下列列聯表,并根據列聯表判斷是否有99%以上的把握認為智力游戲水平高低與性別有關?
性別 | 高級 | 非高級 | 合計 |
女 | 40 | ||
男 | 140 | ||
合計 |
(2)按照性別用分層抽樣的方法從這些人中抽取10人,從這10人中抽取3人作為游戲參賽選手;
若甲入選了10人名單,求甲成為參賽選手的概率;
設抽取的3名選手中女生的人數為
,求
的分布列和期望.
附表:,其中
.
0.010 | 0.05 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解高中生作文成績與課外閱讀量之間的關系,某研究機構隨機抽取了100名高中生,根據問卷調查,得到以下數據:
作文成績優秀 | 作文成績一般 | 總計 | |
課外閱讀量較大 | 35 | 20 | 55 |
課外閱讀量一般 | 15 | 30 | 45 |
總計 | 50 | 50 | 100 |
(1)根據列聯表,能否有99.5%的把握認為課外閱讀量的大小與作文成績優秀有關;
(2)若用分層抽樣的方式從課外閱讀量一般的高中生中選取了6名高中生,再從這6名高中生中隨機選取2名進行面談,求面談的高中生中至少有1名作文成績優秀的概率.
附:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】端午節(每年農歷五月初五),是中國傳統節日,有吃粽子的習俗.某超市在端午節這一天,每售出kg粽子獲利潤
元,未售出的粽子每
kg虧損
元.根據歷史資料,得到銷售情況與市場需求量的頻率分布表,如下表所示.該超市為今年的端午節預購進了
kg粽子.以
(單位:kg,
)表示今年的市場需求量,
(單位:元)表示今年的利潤.
市場需求量(kg) | |||||
頻率 | 0.1 | 0.2 | 0.3 | 0.25 | 0.15 |
(1)將表示為
的函數;
(2)在頻率分布表的市場需求量分組中,以各組的區間中間值代表該組的各個值,需求量落入該區間的頻率作為需求量取該區間中間值的概率(例如:若需求量,則取
,且
的概率等于需求量落入
的頻率
),求
的數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設拋物線C:(
)的焦點為F,經過點F的動直線l交拋物線C于
,
兩點,且
.
(1)求拋物線C的方程;
(2)若(O為坐標原點),且點E在拋物線C上,求直線l的傾斜角;
(3)若點M是拋物線C的準線上的一點,直線,
,
斜率分別為
,
,
,求證:當
為定值時,
也為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知定直線,定點
,以坐標軸為對稱軸的橢圓
過點
且與
相切.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)橢圓的弦的中點分別為
,若
平行于
,則
斜率之和是否為定值? 若是定值,請求出該定值;若不是定值請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,過點
的直線與橢圓
交于
兩點,延長
交橢圓
于點
,
的周長為8.
(1)求的離心率及方程;
(2)試問:是否存在定點,使得
為定值?若存在,求
;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com