【題目】如圖,四邊形為菱形,四邊形
為平行四邊形,設
與
相交于點
,
.
(1)證明:平面平面
;
(2)若,求三棱錐
的體積.
【答案】(1)證明見解析;(2).
【解析】
試題分析:(1)要證面面垂直,需要找線面垂直,本題中重點分析線段,利用條件底面是菱形可得
,通過全等可知
,從而
,故
是平面
的垂線,從而得證;(2)由
知點
到平面
的距離為點
到平面
的距離的兩倍,所以
,作
,證明
平面
,利用三棱錐體積公式求解;也可證明
平面
,從而直接求高,計算體積.
試題解析:(1)證明:
連接,
∵四邊形為菱形,
∵,
在和
中,
,
,
∴,
∴,
∴,
∵,
∴平面
,
∵平面
,
∴平面平面
;
(2)解法一:連接,∵
面
平面
,∴
,
在平行四邊形中,易知
,
∴,即
,又因為
為平面
內的兩條相交直線,所以
平面
,所以點
到平面
的距離為
,
∵,
∴三棱錐的體積為
.
解法二:∵,∴點
到平面
的距離為點
到平面
的距離的兩倍,所以
,
作,∵平面
平面
平面
,
∴,
∴三棱錐的體積為
.
科目:高中數學 來源: 題型:
【題目】天水市第一次聯考后,某校對甲、乙兩個文科班的數學考試成績進行分析,
規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,
得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中隨機抽取1人為優秀的概率為
.
優秀 | 非優秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(1)請完成上面的列聯表;
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
(3)若按下面的方法從甲班優秀的學生中抽取一人:把甲班優秀的10名學生從2到11進行編號,先后兩次拋擲一枚均勻的骰子,出現的點數之和為被抽取人的序號。試求抽到9號或10號的概率。
參考公式與臨界值表:。
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三棱錐中,
, △
是斜邊
的等腰直角三角形, 以下結論中: ① 異面直線
與
所成的角為
;② 直線
平面
;③ 面
面
;④ 點
到平面
的距離是
. 其中正確結論的序號是 ____________________ .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,AE⊥DE,CD⊥平面ADE,AB⊥平面ADE,CD=DA=6,AB=2,DE=3.
(1)求到平面
的距離
(2)在線段上是否存在一點
,使
?若存在,求出
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來我國電子商務行業迎來篷勃發展的新機遇,2016年雙11期間,某購物平臺的銷售業績高達一千多億人民幣.與此同時,相關管理部門推出了針對電商的商品和服務的評價體系.現從評價系統中選出200次成功交易,并對其評價進行統計,對商品的好評率為0.6,對服務的好評率為0.75,其中對商品和服務都做出好評的交易為80次.
(Ⅰ)請完成如下列聯表;
(Ⅱ)是否可以在犯錯誤的概率不超過0.1%的前提下,認為商品好評與服務好評有關?
(Ⅲ)若針對商品的好評率,采用分層抽樣的方式從這200次交易中取出5次交易,并從中選擇兩次交易進行客戶回訪,求只有一次好評的概率.
(,其中
)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2+ax+b,g(x)=ex(cx+d),若曲線y=f(x)和曲線y=g(x)都過點P(0,2),且在點P處有相同的切線y=4x+2.
(1)求a,b,c,d的值;
(2)若x≥-2時,恒有f(x)≤kg(x),求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數.
(1)當時,函數
與
在
處的切線互相垂直,求
的值;
(2)若函數在定義域內不單調,求
的取值范圍;
(3)是否存在正實數,使得
對任意正實數
恒成立?若存在,求出滿足條件的實數
;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,為了保護環境,實現城市綠化,某房地產公司要在拆遷地長方形ABCD處規劃一塊長方形地面HPGC,建造住宅小區公園,但不能越過文物保護區三角形AEF的邊線EF.已知AB=CD=200 m,BC=AD=160 m,AF=40 m,AE=60 m,問如何設計才能使公園占地面積最大,求出最大面積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com