【題目】已知等差數列的前
項中,奇數項的和為56,偶數項的和為48,且
(其中
).
(1)求數列的通項公式;
(2)若,
,…,
,…是一個等比數列,其中
,
,求數列
的通項公式;
(3)若存在實數,
,使得
對任意
恒成立,求
的最小值.
科目:高中數學 來源: 題型:
【題目】某中學要從高一年級甲、乙兩個班級中選擇一個班參加市電視臺組織的“環保知識競賽”.該校對甲、乙兩班的參賽選手(每班7人)進行了一次環境知識測試,他們取得的成績(滿分100分)的莖葉圖如圖所示,其中甲班學生的平均分是85分,乙班學生成績的中位數是85.
(1)求的值;
(2)根據莖葉圖,求甲、乙兩班同學成績的方差的大小,并從統計學角度分析,該校應選擇甲班還是乙班參賽.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了加強環保建設,提高社會效益和經濟效益,某市計劃用若干年時間更換一萬輛燃油型公交車。每更換一輛新車,則淘汰一輛舊車,更換的新車為電力型車和混合動力型車。今年初投入了電力型公交車輛,混合動力型公交車
輛,計劃以后電力型車每年的投入量比上一年增加
,混合動力型車每年比上一年多投入
輛.設
、
分別為第
年投入的電力型公交車、混合動力型公交車的數量,設
、
分別為
年里投入的電力型公交車、混合動力型公交車的總數量。
(1)求、
,并求
年里投入的所有新公交車的總數
;
(2)該市計劃用年的時間完成全部更換,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AA1=2,AC= ,過BC的中點D作平面ACB1的垂線,交平面ACC1A1于E,則BE與平面ABB1A1所成角的正切值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,以坐標原點O為極點,x軸的非負半軸為極軸建立極坐標系,已知點M的極坐標為(2 ,
),曲線C的參數方程為
(α為參數).
(1)直線l過M且與曲線C相切,求直線l的極坐標方程;
(2)點N與點M關于y軸對稱,求曲線C上的點到點N的距離的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】交通管理部門為了解機動車駕駛員(簡稱駕駛員)對某新法規的知曉情況,對甲、乙、丙、丁四個社區做分層抽樣調查.假設四個社區駕駛員的總人數為N,其中甲社區有駕駛員96人.若在甲、乙、丙、丁四個社區抽取駕駛員的人數分別為12,21,25,43,則這四個社區駕駛員的總人數N為( )
A.101
B.808
C.1212
D.2012
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
為
的導函數,其中
.
(1)當時,求函數
的單調區間;
(2)若方程有三個互不相同的根0,
,
,其中
.
①是否存在實數,使得
成立?若存在,求出
的值;若不存在,說明理由.
②若對任意的,不等式
恒成立,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某險種的基本保費為(單位:元),繼續購買該險種的投保人稱為續保人,續保人的本年度的保費與其上年度的出險次數的關聯如下:
上年度出險次數 | 0 | 1 | 2 | 3 | 4 | |
保費 |
設該險種一續保人一年內出險次數與相應概率如下:
一年內出險次數 | 0 | 1 | 2 | 3 | 4 | |
概率 | 0.30 | 0.15 | 0.20 | 0.20 | 0.10 | 0.05 |
(Ⅰ)求一續保人本年度的保費高于基本保費的概率;
(Ⅱ)若一續保人本年度的保費高于基本保費,求其保費比基本保費高出的概率;
(Ⅲ)求續保人本年度的平均保費與基本保費的比值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com