精英家教網 > 高中數學 > 題目詳情

【題目】

1時,求過的切線;

2)討論函數的單調性;

3的零點個數少于個,求的取值范圍.

【答案】1)切線方程為;(2)見解析;(3.

【解析】

1)利用導數求出切線的斜率即得解;

2)先求出導數,再對分類討論即得解;

3)先分離參數得到,再構造函數,研究函數的單調性和圖象即得解.

1時,,

所以,因為

所以切線方程為.

所以切線方程為.

2.

所以.

時,,此時,函數R上單調遞增;

時,,,

所以函數在上單調遞增,在單調遞減.

3,

因為,即不是函數的零點,

所以,設,

所以,

所以函數單調遞增,在,單調遞減,

從左邊趨近時,,當從右邊趨近時,,

時,,當時,,

,畫出的模擬圖像如下所示:

所以當時,直線和函數的圖象的零點個數小于3.

.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,直線的參數方程為為參數).在以坐標原點為極點,軸正半軸為極軸的極坐標系中,曲線.

1)求直線的普通方程和曲線的直角坐標方程;

2)設曲線與直線的交點為,,是曲線上的動點,求面積的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線的焦點為,準線為上一點,直線與拋物線交于,兩點,若,則=

A.B.

C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)討論函數的單調性;

2)若,,且存在不相等的實數,使得,求證

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

Ⅰ)若曲線與直線相切,求的值.

Ⅱ)若求證:有兩個不同的零點,且.(為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】對于很多人來說,提前消費的認識首先是源于信用卡,在那個工資不高的年代,信用卡絕對是神器,稍微大件的東西都是可以選擇用信用卡來買,甚至于分期買,然后慢慢還!現在銀行貸款也是很風靡的,從房貸到車貸到一般的現金貸.信用卡忽如一夜春風來,遍布了各大小城市的大街小巷.為了解信用卡在市的使用情況,某調查機構借助網絡進行了問卷調查,并從參與調查的網友中隨機抽取了100人進行抽樣分析,得到如下列聯表(單位:人)

經常使用信用卡

偶爾或不用信用卡

合計

40歲及以下

15

35

50

40歲以上

20

30

50

合計

35

65

100

1)根據以上數據,能否在犯錯誤的概率不超過0.10的前提下認為市使用信用卡情況與年齡有關?

2)①現從所抽取的40歲及以下的網民中,按經常使用偶爾或不用這兩種類型進行分層抽樣抽取10人,然后,再從這10人中隨機選出4人贈送積分,求選出的4人中至少有3人偶爾或不用信用卡的概率;

②將頻率視為概率,從市所有參與調查的40歲以上的網民中隨機抽取3人贈送禮品,記其中經常使用信用卡的人數為,求隨機變量的分布列、數學期望和方差.

參考公式:,其中

參考數據:

0.15

0.10

0.05

0.025

0.010

2.072

2.706

3.841

5.024

6.635

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某蛋糕店計劃按天生產一種面包,每天生產量相同,生產成本每個6元,售價每個8元,未售出的面包降價處理,以每個5元的價格當天全部處理完.

1)若該蛋糕店一天生產30個這種面包,求當天的利潤y(單位:元)關于當天需求量n(單位:個,)的函數解析式;

2)蛋糕店記錄了30天這種面包的日需求量(單位:個),整理得表:

日需求量n

28

29

30

31

32

33

頻數

3

4

6

6

7

4

假設蛋糕店在這30天內每天生產30個這種面包,求這30天的日利潤(單位:元)的平均數及方差;

3)蛋糕店規定:若連續10天的日需求量都不超過10個,則立即停止這種面包的生產,現給出連續10天日需求量的統計數據為平均數為6,方差為2”,試根據該統計數據決策是否一定要停止這種面包的生產?并給出理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】依據某地某條河流8月份的水文觀測點的歷史統計數據所繪制的頻率分布直方圖如圖(甲)所示;依據當地的地質構造,得到水位與災害等級的頻率分布條形圖如圖(乙)所示.

試估計該河流在8月份水位的中位數;

1)以此頻率作為概率,試估計該河流在8月份發生1級災害的概率;

2)該河流域某企業,在8月份,若沒受12級災害影響,利潤為500萬元;若受1級災害影響,則虧損100萬元;若受2級災害影響則虧損1000萬元.

現此企業有如下三種應對方案:

方案

防控等級

費用(單位:萬元)

方案一

無措施

0

方案二

防控1級災害

40

方案三

防控2級災害

100

試問,如僅從利潤考慮,該企業應選擇這三種方案中的哪種方案?說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】[選修4-4:坐標系與參數方程]

已知曲線的極坐標方程為,以極點為直角坐標原點,以極軸為軸的正半軸建立平面直角坐標系,將曲線向左平移個單位長度,再將得到的曲線上的每一個點的橫坐標縮短為原來的,縱坐標保持不變,得到曲線

(1)求曲線的直角坐標方程;

(2)已知直線的參數方程為,(為參數),點為曲線上的動點,求點到直線距離的最大值.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视