【題目】已知甲、乙、丙三位同學在某次考試中總成績列前三名,有,
,
三位學生對其排名猜測如下:
:甲第一名,乙第二名;
:丙第一名;甲第二名;
:乙第一名,甲第三名.成績公布后得知,
,
,
三人都恰好猜對了一半,則第一名是__________.
科目:高中數學 來源: 題型:
【題目】已知復數z=,(m∈R,i是虛數單位).
(1)若z是純虛數,求m的值;
(2)設是z的共軛復數,復數
+2z在復平面上對應的點在第一象限,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題正確的是( )
A.若數列、
的極限都存在,且
,則數列
的極限存在
B.若數列、
的極限都不存在,則數列
的極限也不存在
C.若數列、
的極限都存在,則數列
、
的極限也存在
D.數,若數列
的極限存在,則數列
的極限也存在
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓與直線
交于
兩點,
不與
軸垂直,圓
.
(1)若點在橢圓
上,點
在圓
上,求
的最大值;
(2)若過線段的中點
且垂直于
的直線
過點
,求直線
的斜率的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系中,曲線
的參數方程為
(
為參數).以坐標原點
為極點,
軸正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)求曲線的極坐標方程和曲線
的參數方程;
(2)若曲線與曲線
,
在第一象限分別交于
兩點,且
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是邊長為2的菱形,,
平面ABCD,
,且
.
(1)求直線AD和平面AEF所成角的大;
(2)求二面角E-AF-D的平面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等軸雙曲線:
的右焦點為
,
為坐標原點,過
作一條漸近線的垂線
且垂足為
,
.
(1)求等軸雙曲線的方程;
(2)若過點且方向向量為
的直線
交雙曲線
于
、
兩點,求
的值;
(3)假設過點的動直線
與雙曲線
交于
、
兩點,試問:在
軸上是否存在定點
,使得
為常數,若存在,求出
的坐標,若不存在,試說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com