【題目】在三棱錐中,已知
,
,
,
,則三棱錐ABCD體積的最大值是______.
【答案】
【解析】
過作與
垂直的平面,交
于
,過
作
的垂線,垂足為
,則
,進而可分析出當
取最大值時,三棱錐
的體積取最大值,又由
,可得B,C都在以A,D為焦點的橢圓上,利用橢圓的幾何意義及勾股定理,求出的最大值即可得結果.
過BC作與AD垂直的平面,交AD于E,過E作BC的垂線,垂足為F,
如圖所示:
,
,則三棱錐
的體積為
,
故EF取最大值時,三棱錐的體積也取最大值.
由,
可得B,C都在以A,D為焦點的橢圓上,
因為平面BCE與線AD垂直,
所以三角形ADB與三角形ADC全等,即三角形BCE為等腰三角形,
又為定值,所以BE取最大值時,三棱錐
的體積也取最大值.
在中,動點B到A,D兩點的距離和為10,
B在以AD為焦點的橢圓上(長軸、焦距分別為、
),
此時,
,
故BE的最大值為,
此時,
故三棱錐的體積的最大值是
.
故答案為:
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2x,過點E(a,0)的直線l與C交于不同的兩點P(x1,y1),Q(x2,y2),且滿足y1y2=﹣4,以Q為中點的線段的兩端點分別為M,N,其中N在x軸上,M在C上,則a=_____.|PM|的最小值為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場一年中各月份的收入、支出(單位:萬元)情況的統計如折線圖所示,則下列說法正確的是( )
A.2至3月份的收入的變化率與11至12月份的收入的變化率相同
B.支出最高值與支出最低值的比是
C.第三季度平均收入為60萬元
D.利潤最高的月份是2月份
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
若滿足:①對任意
、
,都有
;②對任意
,都有
,則稱函數
為“中心捺函數”,其中點
稱為函數
的中心.已知函數
是以
為中心的“中心捺函數”,若滿足不等式
,當
時,
的取值范圍為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知中心在原點,焦點在軸上的橢圓的一個焦點為
,
是橢圓上的一個點.
(1)求橢圓的標準方程;
(2)設橢圓的上、下頂點分別為,
(
)是橢圓上異于
的任意一點,
軸,
為垂足,
為線段
中點,直線
交直線
于點
,
為線段
的中點,如果
的面積為
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C的極坐標方程是,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,曲線C經過伸縮變換
得到曲線E,直線
(t為參數)與曲線E交于A,B兩點.
(1)設曲線C上任一點為,求
的最小值;
(2)求出曲線E的直角坐標方程,并求出直線l被曲線E截得的弦AB長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,
為平行四邊形,
,
平面
,且
,點
是
的中點.
(1)求證:平面
;
(2)在線段上(不含端點)是否存在一點
,使得二面角
的余弦值為
?若存在,確定
的位置;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種治療新型冠狀病毒感染肺炎的復方中藥產品的質量以其質量指標值衡量,質量指標越大表明質量越好,為了提高產品質量,我國醫療科研專家攻堅克難,新研發出、
兩種新配方,在兩種新配方生產的產品中隨機抽取數量相同的樣本,測量這些產品的質量指標值,規定指標值小于
時為廢品,指標值在
為一等品,大于
為特等品.現把測量數據整理如下,其中
配方廢品有
件.
配方的頻數分布表
質量指標值分組 | |||||
頻數 |
(1)求,
的值;
(2)試確定配方和
配方哪一種好?(說明:在統計方法中,同一組數據常用該組區間的中點值作為代表)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點,
分別是橢圓
右頂點與上頂點,坐標原點
到直線
的距離為
,且點
是圓
的圓心,動直線
與橢圓交于
,
兩點.
(1)求橢圓的方程;
(2)若點在線段
上,
,且當
取最小值時直線
與圓
相切,求
的值;
(3)若直線與圓
分別交于
,
兩點,點
在線段
上,且
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com