【題目】如圖,在四棱錐中,底面
為正方形,
是
中點.
(1)求點到平面
的距離;
(2)求二面角的余弦值.
【答案】(1);(2)
.
【解析】試題分析:(1)根據勾股定理可證明平面
,從而可分別以
為
軸、
軸,
軸,建立空間直角坐標系,先求
的方向向量,再出利用向量垂直數量積為零列方程組求出平面
的一個法向量,從而可得線面成角的正弦值,進而可得結果;(2)利用向量垂直數量積為零列方程組求出平面
的一個法向量,結合(1)的結論,利用空間向量夾角余弦公式可得二面角
的余弦值.
試題解析:∵正方形邊長,
∴,∴
,∴
平面
,
∴分別以為
軸、
軸,
軸,
建立如圖所示的空間直角坐標系,
則,
∴,
(1)設平面的一個法向量
,
則,令
,得
,
∴與平面
所成角的正弦值
,
∴點到平面
的距離為
;
(2)設平面的一個法向量
,
則,令
,得
,
∴,∴二面角
的余弦值為
.
【方法點晴】本題主要考查利用空間向量求二面角與線面角,屬于難題. 空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.
科目:高中數學 來源: 題型:
【題目】如圖,點P在正方體ABCD﹣A1B1C1D1的表面上運動,且P到直線BC與直線C1D1的距離相等,如果將正方體在平面內展開,那么動點P的軌跡在展開圖中的形狀是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校進行社會實踐,對歲的人群隨機抽取1000人進行了一次是否開通“微博”的調查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調查得到各年齡段人數的頻率分布直方圖如圖所示,其中在
歲、
歲年齡段人數中,“時尚族”人數分別占本組人數的80%、60%.
請完成以下問題:
(1)求歲與
歲年齡段“時尚族”的人數;
(2)從歲和
歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網絡時尚達人大賽,其中兩人作為領隊,求領隊的兩人年齡都在
歲內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=.
(1)判斷函數f(x)的奇偶性;
(2)判斷并用定義證明函數f(x)在其定義域上的單調性.
(3)若對任意的t1,不等式f(
)+f(
)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)的定義域為實數集R,及整數k、T;
(1)若函數f(x)=2xsin(πx),證明f(x+2)=4f(x);
(2)若f(x+T)=kf(x),且f(x)=axφ(x)(其中a為正的常數),試證明:函數φ(x)為周期函數;
(3)若f(x+6)= f(x),且當x∈[﹣3,3]時,f(x)=
(x2﹣9),記Sn=f(2)+f(6)+f(10)+…+f(4n﹣2),n∈N+ , 求使得S1、S2、S3、…、Sn小于1000都成立的最大整數n.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xlnx+a.
(1)若函數y=f(x)在x=e處的切線方程為y=2x,求實數a的值;
(2)設m>0,當x∈[m,2m]時,求f(x)的最小值;
(3)求證: .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)滿足f(1)=1,且對任意的x∈R,都有f′(x)< ,則不等式f(log2x)>
的解集為( )
A.(1,+∞)
B.(0,1)
C.(0,2)
D.(2,+∞)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com