【題目】如圖,橢圓:
的左、右焦點分別為
,橢圓
上一點
與兩焦點構成的三角形的周長為6,離心率為
,
(Ⅰ)求橢圓的方程;
(Ⅱ)過點的直線
交橢圓
于
兩點,問在
軸上是否存在定點
,使得
為定值?證明你的結論.
【答案】(1)(2)存在定點
,使得
為定值.
【解析】
(Ⅰ)根據點與兩焦點構成的三角形的周長為6,離心率為
,結合性質
,列出關于
、
、
的方程組,求出
、
,即可得結果;(Ⅱ)設出直線方程,直線方程與橢圓方程聯立,消去
可得關于
的一元二次方程,
表示為
,利用韋達定理化簡可得
,令
可得結果.
(Ⅰ)由題設得,又
,解得
,∴
.
故橢圓的方程為
.
(Ⅱ),當直線
的斜率存在時,設此時直線
的方程為
,
設,
,把
代入橢圓
的方程
,消去
并整理得,
,則
,
,
可得.設點
,
那么,
若軸上存在定點
,使得
為定值,則有
,解得
,
此時,,
當直線的斜率不存在時,此時直線
的方程為
,把
代入橢圓方程
解得
,
此時,,
,
,
綜上,在軸上存在定點
,使得
為定值.
科目:高中數學 來源: 題型:
【題目】已知橢圓C: (a>b>0),四點P1(1,1),P2(0,1),P3(–1,
),P4(1,
)中恰有三點在橢圓C上.
(1)求C的方程;
(2)設直線l不經過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為–1,證明:l過定點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】南宋數學家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數列與一般等差數列不同,前后兩項之差并不相等,但是逐項差數之差或者高次差成等差數列對這類高階等差數列的研究,在楊輝之后一般稱為“垛積術”.現有高階等差數列,其前7項分別為1,4,8,14,23,36,54,則該數列的第19項為( )(注:)
A.1624B.1024C.1198D.1560
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著馬拉松運動在全國各地逐漸興起,參與馬拉松訓練與比賽的人數逐年增加.為此,某市對參加馬拉松運動的情況進行了統計調査,其中一項是調査人員從參與馬拉松運動的人中隨機抽取100人,對其每月參與馬拉松運動訓練的夭數進行統計,得到以下統計表;
平均每月進行訓練的天數 | |||
人數 | 15 | 60 | 25 |
(1)以這100人平均每月進行訓練的天數位于各區間的頻率代替該市參與馬拉松訓練的人平均每月進行訓練的天數位于該區間的概率.從該市所有參與馬拉松訓練的人中隨機抽取4個人,求恰好有2個人是“平均每月進行訓練的天數不少于20天”的概率;
(2)依據統計表,用分層抽樣的方法從這100個人中抽取12個,再從抽取的12個人中隨機抽取3個,表示抽取的是“平均每月進行訓練的天數不少于20天”的人數,求
的分布列及數學期望
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱中,四邊形
,
均為正方形,且
,M為
的中點,N為
的中點.
(1)求證:平面ABC;
(2)求二面角的正弦值;
(3)設P是棱上一點,若直線PM與平面
所成角的正弦值為
,求
的值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】橢圓的焦點為
和
,過
的直線
交
于
兩點,過
作與
軸垂直的直線
,又知點
,直線
記為
,
與
交于點
.設
,已知當
時,
.
(Ⅰ)求橢圓的方程;
(Ⅱ)求證:無論如何變化,點
的橫坐標是定值,并求出這個定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將字母放入
的方表格,每個格子各放一個字母,則每一行的字母互不相同,每一列的字母也互不相同的概率為_______;若共有
行字母相同,則得k分,則所得分數
的數學期望為______;(注:橫的為行,豎的為列;比如以下填法第二行的兩個字母相同,第1,3行字母不同,該情況下
)
a | b |
c | c |
a | b |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com