【題目】已知函數f(x)=sin2ωx+2 cosωxsinωx+sin(ωx+
)sin(ωx﹣
)(ω>0),且f(x)的最小正周期為π.
(1)求ω的值;
(2)求函數f(x)在區間(0,π)上的單調增區間.
科目:高中數學 來源: 題型:
【題目】為了解學生身高情況,某校以 的比例對全校1000名學生按性別進行分層抽樣調查,已知男女比例為
,測得男生身高情況的頻率分布直方圖(如圖所示):
(1)計算所抽取的男生人數,并估計男生身高的中位數(保留兩位小數);
(2)從樣本中身高在 之間的男生中任選2人,求至少有1人身高在
之間的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在梯形ABCD中,AB∥CD,AD=DC=CB=a,∠ABC=60°,四邊形ACFE是矩形,且平面ACFE⊥平面ABCD,點M在線段EF上. (I)求證:BC⊥平面ACFE;
(II)當EM為何值時,AM∥平面BDF?證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=ax2﹣2(a+1)x+3(a∈R).
(1)若函數f(x)在 單調遞減,求實數a的取值范圍;
(2)令h(x)= ,若存在
,使得|h(x1)﹣h(x2)|≥
成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若拋物線y2=2px上恒有關于直線x+y﹣1=0對稱的兩點A,B,則p的取值范圍是( )
A.(﹣ ,0)
B.(0, )
C.(0, )
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=a(|sinx|+|cosx|)﹣ sin2x﹣1,若f(
)=
﹣
.
(1)求a的值,并寫出函數f(x)的最小正周期(不需證明);
(2)是否存在正整數k,使得函數f(x)在區間[0,kπ]內恰有2017個零點?若存在,求出k的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,給出以下結論: ①直線A1B與B1C所成的角為60°;
②若M是線段AC1上的動點,則直線CM與平面BC1D所成角的正弦值的取值范圍是 ;
③若P,Q是線段AC上的動點,且PQ=1,則四面體B1D1PQ的體積恒為 .
其中,正確結論的個數是( )
A.0個
B.1個
C.2個
D.3個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直線y=x被圓C所截得的弦長;
(Ⅱ) 若a>1,如圖,圓C與x軸相交于兩點M,N(點M在點N的左側).過點M的動直線l與圓O:x2+y2=4相交于A,B兩點.問:是否存在實數a,使得對任意的直線l均有∠ANM=∠BNM?若存在,求出實數a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=| ﹣ax|,若對任意的正實數a,總存在x0∈[1,4],使得f(x0)≥m,則實數m的取值范圍為( )
A.(﹣∞,0]
B.(﹣∞,1]
C.(﹣∞,2]
D.(﹣∞,3]
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com