已知函數,其中
為實數.
(1)當時,求函數
在區間
上的最大值和最小值;
(2)若對一切的實數,有
恒成立,其中
為
的導函數,求實數
的取值范圍.
科目:高中數學 來源: 題型:解答題
已知函數(
)
(1)當a=2時,求在區間[e,e2]上的最大值和最小值;
(2)如果函數、
、
在公共定義域D上,滿足
<
<
,那么就稱
為
、
的“伴隨函數”.已知函數
,
,若在區間(1,+∞)上,函數
是
、
的“伴隨函數”,求a的取值范圍。
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某商場銷售某種商品的經驗表明,該商品每日的銷售量 (單位:千克)與銷售價格
(單位:元/千克)滿足關系式
,其中
,
為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某風景區在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(弧度),將綠化帶總長度表示為
的函數
;
(2)試確定的值,使得綠化帶總長度最大.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數,
,其中
,
為自然對數的底數.
(1)若在
處的切線
與直線
垂直,求
的值;
(2)求在
上的最小值;
(3)試探究能否存在區間,使得
和
在區間
上具有相同的單調性?若能存在,說明區間
的特點,并指出
和
在區間
上的單調性;若不能存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com