精英家教網 > 高中數學 > 題目詳情

已知函數,其中為實數.
(1)當時,求函數在區間上的最大值和最小值;
(2)若對一切的實數,有恒成立,其中的導函數,求實數的取值范圍.

(1)在區間上最小值為,最大值為;(2).

解析試題分析:(1)當時,,求出函數 的導函數,判斷的單調性,即可求出函數最大值和最小值;
(2)由題目條件得:對任意的都成立,后按,三種情況,對進行分類討論去絕對值,能夠求出的取值范圍.
(1)時,,                    
,得,
,得,
,得,                  
,上單調遞增;單調遞減;
;
.
                       
在區間上最小值為,最大值為 
(2)由條件有:,
①當時,
②當時,,即時恒成立
因為,當時等號成立.
所以,即                     
③當時,,即

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.若曲線在點處的切線與直線垂直,
(1)求實數的值;
(2)求函數的單調區間;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數()
(1)當a=2時,求在區間[e,e2]上的最大值和最小值;
(2)如果函數、、在公共定義域D上,滿足<<,那么就稱、的“伴隨函數”.已知函數,若在區間(1,+∞)上,函數、的“伴隨函數”,求a的取值范圍。

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若函數內單調遞增,求的取值范圍;
(2)若函數處取得極小值,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某商場銷售某種商品的經驗表明,該商品每日的銷售量 (單位:千克)與銷售價格 (單位:元/千克)滿足關系式,其中,為常數.已知銷售價格為5元/千克時,每日可售出該商品11千克.
(1)求的值;
(2)若該商品的成品為3元/千克, 試確定銷售價格的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某風景區在一個直徑AB為100米的半圓形花園中設計一條觀光線路(如圖所示).在點A與圓
弧上的一點C之間設計為直線段小路,在路的兩側邊緣種植綠化帶;從點C到點B設計為沿弧的弧形小路,在路的一側邊緣種植綠化帶.(注:小路及綠化帶的寬度忽略不計)
(1)設(弧度),將綠化帶總長度表示為的函數;
(2)試確定的值,使得綠化帶總長度最大.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,其中為自然對數的底數.
(1)若處的切線與直線垂直,求的值;
(2)求上的最小值;
(3)試探究能否存在區間,使得在區間上具有相同的單調性?若能存在,說明區間的特點,并指出在區間上的單調性;若不能存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數處取得極值,求的值;
(2)若函數的圖象上存在兩點關于原點對稱,求的范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的單調區間;
(2)證明:對任意的,存在唯一的,使
(3)設(2)中所確定的關于的函數為,證明:當時,有.

查看答案和解析>>
久久精品免费一区二区视