科目:高中數學 來源: 題型:解答題
已知數列{an}滿足:a1=,
=
,anan+1<0(n≥1,n∈N+),數列{bn}滿足:bn=
-
(n≥1,n∈N+).
(1)求數列{an},{bn}的通項公式.
(2)證明:數列{bn}中的任意三項不可能成等差數列.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=|x+3|+|x-a|(a>0).
(1)當a=4時,已知f(x)=7,求x的取值范圍;
(2)若f(x)≥6的解集為{x|x≤-4或x≥2},求a的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知函數f(x)=|2x-1|+|2x+a|,g(x)=x+3.
(1)當a=-2時,求不等式f(x)<g(x)的解集;
(2)設a>-1時,且當x∈時,f(x)≤g(x),求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
已知(x+1)n=a0+a1(x﹣1)+a2(x﹣1)+a3(x﹣1)3+…+an(x﹣1)n,(其中n∈N*)
(1)求a0及;
(2)試比較Sn與(n﹣2)2n+2n2的大小,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com