【題目】已知函數f(x)=x3﹣3x
(1)求函數f(x)的單調區間,并求函數f(x)的極值;
(2)若方程x3﹣3x﹣a+1=0有三個相異的實數根,求a的取值范圍.
【答案】
(1)解:f'(x)=3x2﹣3由f'(x)=0解得x=±1
列表如下:
x | (﹣∞,﹣1) | ﹣1 | (﹣1,1) | 1 | (1,+∞) |
f'(x) | + | 0 | ﹣ | 0 | + |
f(x) | ↗ | 極大值f(﹣1) | ↘ | 極小值f(1) | ↗ |
所以函數的單調遞增區間是(﹣∞,﹣1),(1,+∞)
單調遞減區間是(﹣1,1)
函數的極大值是f(﹣1)=2,極小值是f(1)=﹣2
(2)解:方程x3﹣3x﹣a+1=0即為方程x3﹣3x=a﹣1
令y=x3﹣3x和y=a﹣1,方程x3﹣3x﹣a+1=0有三個相異的實數根即上述兩個函數的圖象有三個不同的交點y=a﹣1是一條直線而y=x3﹣3x的圖象大致如下:
如圖要使兩個函數的圖象有三個不同的交點
則有:﹣2<a﹣1<2,解得:﹣1<a<3
【解析】(1)先求導數fˊ(x)然后在函數的定義域內解不等式fˊ(x)>0和fˊ(x)<0,fˊ(x)>0的區間為單調增區間,fˊ(x)<0的區間為單調減區間,從而求函數f(x)的極值;(2)方程x3﹣3x﹣a+1=0即為方程x3﹣3x=a﹣1,令y=x3﹣3x和y=a﹣1,方程x3﹣3x﹣a+1=0有三個相異的實數根,轉化為判斷兩個函數何時有三個不同交點的問題,數形結合,問題得解.
【考點精析】本題主要考查了利用導數研究函數的單調性和函數的極值與導數的相關知識點,需要掌握一般的,函數的單調性與其導數的正負有如下關系: 在某個區間內,(1)如果
,那么函數
在這個區間單調遞增;(2)如果
,那么函數
在這個區間單調遞減;求函數
的極值的方法是:(1)如果在
附近的左側
,右側
,那么
是極大值(2)如果在
附近的左側
,右側
,那么
是極小值才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C的參數方程為 (θ為參數),直線l經過點P(1,1),傾斜角
,
(1)寫出直線l的參數方程;
(2)設l與圓C相交于兩點A,B,求點P到A,B兩點的距離之積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=xsinx,有下列四個結論: ①函數f(x)的圖象關于y軸對稱;
②存在常數T>0,對任意的實數x,恒有f(x+T)=f(x);
③對于任意給定的正數M,都存在實數x0 , 使得|f(x0)|≥M;
④函數f(x)在[0,π]上的最大值是 .
其中正確結論的序號是(請把所有正確結論的序號都填上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數 ,若存在x1 , x2 , 當0≤x1<x2<2時,f(x1)=f(x2),則x1f(x2)﹣f(x2)的取值范圍為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現在某市進行調查,隨機調查了50人,他們年齡大點頻率分布及支持“生育二胎”人數如下表:
年齡 | ||||||
頻率 | 5 | 10 | 15 | 10 | 5 | 5 |
支持“生育二胎” | 4 | 5 | 12 | 8 | 2 | 1 |
(1)由以上統計數據填下面2乘2列聯表,并問是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異:
(2)若對年齡在的被調查人中隨機選取兩人進行調查,恰好這兩人都支持“生育二胎放開”的概率是多少?
參考數據: ,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數f(x)滿足:f(﹣x)+f(x)=ex+e﹣x , 則稱f(x)為“e函數”.
(1)試判斷f(x)=ex+x3是否為“e函數”,并說明理由;
(2)若f(x)為“e函數”且 ,
(。┣笞C:f(x)的零點在 上;
(ⅱ)求證:對任意a>0,存在λ>0,使f(x)<0在(0,λa)上恒成立.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知點是圓心為
的圓
上的動點,點
,線段
的垂直平分線交
于點
.
(1)求動點的軌跡
的方程;
(2)矩形的邊所在直線與曲線
均相切,設矩形
的面積為
,求
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com