【題目】求函數f(x)=3﹣2asinx﹣cos2x,x∈[﹣ ,
]的最小值.
【答案】解:∵f(x)=3﹣2asinx﹣cos2x=sin2x﹣2asinx+2=(sinx﹣a)2+2﹣a2 ,
∵x∈[﹣ ,
],
∴sinx∈[﹣ ,1],
∴a<﹣ 時,當sinx=﹣
時,函數f(x)取最小值a+
;
﹣ ≤a≤1時,當sinx=a時,函數f(x)取最小值2﹣a2;
a>1時,當sinx=1時,函數f(x)取最小值3﹣2a;
綜上可知:
【解析】f(x)解析式可化為:f(x)═(sinx﹣a)2+2﹣a2 , sinx∈[﹣ ,1],結合二次函數的圖象和性質,分類討論,可得不同情況下,函數的最小值.
【考點精析】利用二次函數的性質和三角函數的最值對題目進行判斷即可得到答案,需要熟知當時,拋物線開口向上,函數在
上遞減,在
上遞增;當
時,拋物線開口向下,函數在
上遞增,在
上遞減;函數
,當
時,取得最小值為
;當
時,取得最大值為
,則
,
,
.
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為 (t為參數),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln x-mx+n,m,n∈R.
(1)若函數f(x)的圖像在點(1,f(1))處的切線為y=2x-1,求m,n的值;
(2)求函數f(x)的單調區間;
(3)若n=0,不等式f(x)+m<0對x∈(1,+∞)恒成立,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinx﹣xcosx.
(1)討論f(x)在(0,2π)上的單調性;
(2)若關于x的方程f(x)﹣x2+2πx﹣m=0在(0,2π)有兩個根,求實數m的取值范圍.
(3)求證:當x∈(0, )時,f(x)<
x3 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系xOy中,圓C1:(x﹣1)2+y2=2,圓C2:(x﹣m)2+(y+m)2=m2 . 圓C2上存在點P滿足:過點P向圓C1作兩條切線PA,PB,切點為A,B,△ABP的面積為1,則正數m的取值范圍是 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com