【題目】已知某校中小學生人數和近視情況分別如圖所示.為了解該校中小學生的近視形成原因,用分層抽樣的方式從中抽取一個容量為50的樣本進行調查.
(1)求樣本中高中生、初中生及小學生的人數;
(2)從該校初中生和高中生中各隨機抽取1名學生,用頻率估計概率,求恰有1名學生近視的概率;
(3)假設高中生樣本中恰有5名近視學生,從高中生樣本中隨機抽取2名學生,用表示2名學生中近視的人數,求隨機變量
的分布列和數學期望.
【答案】(1)10,20,20,(2)0.5 (3)分布列見解析,
【解析】
(1)利用分層抽樣計算高中生、初中生及小學生的人數即可.
(2)首先設事件為“從該校初中生抽取1名學生是近視”,事件
為“該校高中生抽取1名學生是近視”,分別計算出
,
,再利用概率公式
計算即可.
(3)先求出的所有取值及對應的概率,列出分布列,計算數學期望即可.
(1)采用分層抽樣,樣本容量與總體容量的比為:,
所以樣本中高中生、初中生及小學生的人數分別為:10,20,20.
(2)設事件為“從該校初中生抽取1名學生是近視”,
事件為“該校高中生抽取1名學生是近視”.
由題意知:,
,
故所求概率為.
故所求概率為:.
(3)隨機變量的所有可能取值為:0,1,2.
,
,
.
所以隨機變量的分布列為:
0 | 1 | 2 | |
所以.
科目:高中數學 來源: 題型:
【題目】已知在平面直角坐標系中,中心在原點,焦點在y軸上的橢圓C與橢圓
的離心率相同,且橢圓C短軸的頂點與橢圓E長軸的頂點重合.
(1)求橢圓C的方程;
(2)若直線l與橢圓E有且僅有一個公共點,且與橢圓C交于不同兩點A,B,求的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
的最大值為
.
(Ⅰ)求實數的值;
(Ⅱ)當時,討論函數
的單調性;
(Ⅲ)當時,令
,是否存在區間
.使得函數
在區間
上的值域為
若存在,求實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱ABCD-中,地面ABCD為直角梯形,AB∥CD,AB⊥BC,平面ABCD⊥平面AB
,∠BA
=60°,AB=A
=2BC=2CD=2
(1)求證:BC⊥A;
(2)求二面角D-A-B的余弦值;
(3)在線段D上是否存在點M,使得CM∥平面DA
?若存在,求
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率
,且橢圓過點
(1)求橢圓的標準方程;
(2)設直線與
交于
、
兩點,點
在橢圓
上,
是坐標原點,若
,判定四邊形
的面積是否為定值?若為定值,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,四邊形
是邊長為2的正方形,
,
為
的中點,點
在
上,
平面
,
在
的延長線上,且
.
(1)證明:平面
.
(2)過點作
的平行線,與直線
相交于點
,當點
在線段
上運動時,二面角
能否等于
?請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com