【題目】下面給出了一個問題的算法:
第一步,輸入x.
第二步,若x≥4,則執行第三步,否則執行第四步.
第三步,y=2x-1,輸出y.
第四步,y=x2-2x+3,輸出y.
問題:(1)這個算法解決的問題是什么?
(2)當輸入的x值為多大時,輸出的數值最?
科目:高中數學 來源: 題型:
【題目】若對任意x∈A,y∈B,(AR,BR)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數.現定義滿足下列性質的二元函數f(x,y)為關于實數x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數z均成立.
今給出三個二元函數,請選出所有能夠成為關于x、y的廣義“距離”的序號:
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③ .
能夠成為關于的x、y的廣義“距離”的函數的序號是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是函數的導函數的圖象,給出下列命題:
①是函數的極值點;
②是函數的最小值點;
③在處切線的斜率小于零;
④在區間上單調遞增。
則正確命題的序號是( )
A.①②
B.①④
C.②③
D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調區間;
(2)已知f(x)在x=1處取得極大值,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】判斷下列命題是全稱命題還是特稱命題,并判斷其真假.
(1)對數函數都是單調函數;
(2)至少有一個整數,它既能被11整除,又能被9整除;
(3)x∈{x|x>0}, ;
(4)x0∈Z,log2x0>2.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(2015·四川)已知函數f(x)=-2(x+a)lnx+x2-2ax-2a2+a,其中a>0.
(1)設g(x)是f(x)的導函數,討論g(x)的單調性;
(2)證明:存在a(0,1),使得f(x)≥0,在區間(1,+
)內恒成立,且f(x)=0在(1,+
)內有唯一解.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,設a,b,c,d>0,且不等于1,y=ax , y=bx , y=cx , y=dx在同一坐標系中的圖象如圖,則a,b,c,d的大小順序( 。
A.a<b<c<d
B.a<b<d<c
C.b<a<d<c
D.b<a<c<d
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(2x+1)定義域是[﹣1,0],則y=f(x+1)的定義域是( 。
A.[﹣1,1]
B.[0,2]
C.[﹣2,0]
D.[﹣2,2]
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數exf(x)(e≈2.71828…是自然對數的底數)在f(x)的定義域上單調遞增,則稱函數f(x)具有M性質.下列函數中所有具有M性質的函數的序號為 .
①f(x)=2﹣x②f(x)=3﹣x③f(x)=x3④f(x)=x2+2.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com