【題目】在平面直角坐標系中,動圓
與圓
外切,與圓
內切.
(1)求動圓圓心的軌跡方程;
(2)直線過點
且與動圓圓心
的軌跡交于
、
兩點.是否存在
面積的最大值,若存在,求出
的面積;若不存在,說明理由.
【答案】(1);(2)存在,
面積的最大值為
,理由見解析.
【解析】
(1)設動圓的半徑為
,利用幾何關系轉化兩圓內切和外切的問題,可得出
,可得知點
的軌跡是以點
、
為焦點的橢圓,并設該橢圓的方程為
,利用橢圓的定義求出
的值,可求出
的值,由此可得出動點
的軌跡方程;
(2)設直線的方程為
,設點
、
,將直線
的方程與橢圓的方程聯立,列出韋達定理,并計算出
的面積關于
的表達式,換元
,利用雙勾函數的單調性可得出
面積的最大值.
(1)設點,動圓
的半徑為
,
由題意知,,
,
由橢圓定義可知,動圓圓心在以
、
為焦點的橢圓上,
設該橢圓的方程為,且
,
,
.
由于圓內切于圓
于點
,則
.
因此,動圓圓心的軌跡方程為
;
(2)存在面積的最大值.
因為直線過點
,可設直線
的方程為
或
(舍).
則,整理得
.
由.
設點、
,則
,
.
則,
因為.
設,則
,則
.
設在區間
上為增函數,所以
.
所以,當且僅當
時取等號,即
.
因此,面積的最大值為
.
科目:高中數學 來源: 題型:
【題目】如今我們的互聯網生活日益豐富,除了可以很方便地網購,網絡外賣也開始成為不少人日常生活中不可或缺的一部分市某調查機構針對該市市場占有率最高的兩種網絡外賣企業
以下簡稱外賣A、外賣
的服務質量進行了調查,從使用過這兩種外賣服務的市民中隨機抽取了1000人,每人分別對這兩家外賣企業評分,滿分均為100分,并將分數分成5組,得到以下頻數分布表:
分數 人數 種類 | |||||
外賣A | 50 | 150 | 100 | 400 | 300 |
外賣B | 100 | 100 | 300 | 200 | 300 |
表中得分越高,說明市民對網絡外賣服務越滿意若得分不低于60分,則表明該市民對網絡外賣服務質量評價較高
現將分數按“服務質量指標”劃分成以下四個檔次:
分數 | ||||
服務質量指標 | 0 | 1 | 2 | 3 |
視頻率為概率,解決下列問題:
從該市使用過外賣A的市民中任選5人,記對外賣A服務質量評價較高的人數為X,求X的數學期望.
從參與調查的市民中隨機抽取1人,試求其評分中外賣A的“服務質量指標”與外賣B的“服務質量指標”的差的絕對值等于2的概率;
在M市工作的小王決定從外賣A、外賣B這兩種網絡外賣中選擇一種長期使用,如果從這兩種外賣的“服務質量指標”的期望角度看,他選擇哪種外賣更合適?試說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四面體ABCD中,平面DAC⊥底面ABC,,AD=CD=
,O是AC的中點,E是BD的中點.
(1)證明:DO⊥底面ABC;
(2)求二面角D-AE-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是由非負整數組成的無窮數列,對每一個正整數
,該數列前
項的最大值記為
,第
項之后各項
的最小值記為
,記
.
(1)若數列的通項公式為
,求數列
的通項公式;
(2)證明:“數列單調遞增”是“
”的充要條件;
(3)若對任意
恒成立,證明:數列
的通項公式為
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是拋物線
上一點,經過點
的直線
與拋物線
交于
、
兩點(不同于點
),直線
、
分別交直線
于點
、
.
(1)求拋物線方程及其焦點坐標;
(2)求證:以為直徑的圓恰好經過原點.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以橢圓:
的中心
為圓心,
為半徑的圓稱為該橢圓的“準圓”,設橢圓
的左頂點為
,左焦點為
,上頂點為
,且滿足
,
.
(1)求橢圓及其“準圓"的方程;
(2)若過點的直線
與橢圓
交于
、
兩點,當
時,試求直線
交“準圓”所得的弦長;
(3)射線與橢圓
的“準圓”交于點
,若過點
的直線
,
與橢圓
都只有一個公共點,且與橢圓
的“準圓”分別交于
,
兩點,試問弦
是否為”準圓”的直徑?若是,請給出證明:若不是,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com