【題目】某工廠有25周歲以上(含25周歲)工人300名,25周歲以下工人200名.為了研究工人的日平均生產量是否與年齡有關,現采用分層抽樣的方法,從中抽取了100名工人,先統計了他們某月的日平均生產件數,然后按工人年齡在“25周歲以上(含25周歲)”和“25周歲以下”分為兩組,再將兩組工人的日平均生產件數分成5組:,
,
,
,
,分別加以統計,得到如圖所示的頻率分布直方圖.
(1)根據“25周歲以上組”的頻率分布直方圖,求25周歲以上組工人日平均生產件數的中位數的估計值(四舍五入保留整數);
(2)從樣本中日平均生產件數不足60件的工人中隨機抽取2人,求至多抽到一名“25周歲以下組”工人的概率。
科目:高中數學 來源: 題型:
【題目】如圖所示,圓錐的軸截面為等腰直角△SAB,Q為底面圓周上一點.
(1)若QB的中點為C,OH⊥SC,求證:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2,求此圓錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)圖象上的所有點向右平移
個單位得到函數g(x)的圖象,則函數g(x)的單調遞增區間為( )
A.[kπ﹣ ,kπ+
],k∈Z
B.[2kπ﹣ ,2kπ+
],k∈Z
C.[kπ﹣ ,kπ+
],k∈Z
D.[2kπ﹣ ,2kπ+
],k∈Z
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的兩個焦點分別為F1(﹣ ,0),F2(
,0),且橢圓C過點P(3,2).
(1)求橢圓C的標準方程;
(2)與直線OP平行的直線交橢圓C于A,B兩點,求△PAB面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sin2ωx+2 sinωxcosωx﹣cos2ωx(ω>0),f(x)的圖象相鄰兩條對稱軸的距離為
.
(1)求f( )的值;
(2)將f(x)的圖象上所有點向左平移m(m>0)個長度單位,得到y=g(x)的圖象,若y=g(x)圖象的一個對稱中心為( ,0),當m取得最小值時,求g(x)的單調遞增區間.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】方程的曲線即為函數
的圖像,對于函數
,有如下結論:①
在
上單調遞減;②函數
不存在零點;③函數
的值域是
;④
的圖像不經過第一象限,其中正確結論的個數是___________
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某品牌汽車4S店,對該品牌旗下的A型、B型、C型汽車進行維修保養,每輛車一年內需要維修的人工費用為200元,汽車4S店記錄了該品牌三種類型汽車各100輛到店維修的情況,整理得下表:
車型 | A型 | B型 | C型 |
頻數 | 20 | 40 | 40 |
假設該店采用分層抽樣的方法從上維修的100輛該品牌三種類型汽車中隨機抽取10輛進行問卷回訪.
(1)從參加問卷到訪的10輛汽車中隨機抽取兩輛,求這兩輛汽車來自同一類型的概率;
(2)某公司一次性購買該品牌A、B、C型汽車各一輛,記ξ表示這三輛車的一年維修人工費用總和,求ξ的分布列及數學期望(各型汽車維修的概率視為其需要維修的概率);
(3)經調查,該品牌A型汽車的價格與每月的銷售量之間有如下關系:
價格(萬元) | 25 | 23.5 | 22 | 20.5 |
銷售量(輛) | 30 | 33 | 36 | 39 |
已知A型汽車的購買量y與價格x符合如下線性回歸方程: =
x+80,若A型汽車價格降到19萬元,請你預測月銷售量大約是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com