【題目】正△ABC的邊長為2, CD是AB邊上的高,E、F分別是AC和BC的中點(如圖(1)).現將△ABC沿CD翻成直二面角A-DC-B(如圖(2)).在圖(2)中:
(1)求證:AB∥平面DEF;
(2)在線段BC上是否存在一點P,使AP⊥DE?證明你的結論;
(3)求二面角E-DF-C的余弦值.
【答案】(1) 見解析.(2) 見解析.(3) .
【解析】試題分析:(Ⅰ)由E、F分別是AC、BC的中點,得EF∥AB,由此能證明AB∥平面DEF;(Ⅱ)以點D為坐標原點,以直線DB、DC、DA分別為x軸、y軸、z軸,建立空間直角坐標系.利用向量法能在線段BC上存在點P,使AP⊥DE;(Ⅲ)分別求出平面CDF的法向量和平面EDF的法向量,利用同向量法能求出二面角E-DF-C的平面角的余弦值
試題解析:(1)證明:在△ABC中,因為E、F分別是AC、BC的中點,
所以EF∥AB.
又AB平面DEF,EF平面DEF,
所以AB∥平面DEF.
(2)以點D為坐標原點,以直線DB、DC、DA分別為x軸、y軸、z軸建立空間直角坐標系(圖略).則A(0,0,1),B(1,0,0),C(0, ,0),E(0,
,
),F(
,
,0),
=(1,0,-1),
=(-1,
,0),
=(0,
,
),
=(
,
,0).
設=λ
,則
=
+
=(1-λ,
λ,-1),
注意到AP⊥DE·
=0λ=
=
,
所以在線段BC上存在點P,使AP⊥DE.
(3)平面CDF的一個法向量=(0,0,1),設平面EDF的法向量為n=(x,y,z),
則,即
,取n=(3,-
,3),
cos〈,n〉=
=
,
所以二面角EDFC的余弦值為.
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓C過點
,焦點
,圓O的直徑為
.
(1)求橢圓C及圓O的方程;
(2)設直線l與圓O相切于第一象限內的點P.
①若直線l與橢圓C有且只有一個公共點,求點P的坐標;
②直線l與橢圓C交于兩點.若
的面積為
,求直線l的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四棱柱中,側棱
底面
,
,
,
,
,
為
棱的中點.
(1)證明;
(2)求二面角的余弦值;
(3)設點在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數是奇函數,則實數m的值是______;若函數f(x)在區間[-1,a-2]上滿足對任意x1≠x2,都有
成立,則實數a的取值范圍是______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數為奇函數.
(1)求a的值,并證明是R上的增函數;
(2)若關于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題:
①若是定義在
上的偶函數,且在
上是增函數,
,則
;
②若銳角、
滿足c
,則
;
③若,則
對
恒成立;
④要得到的圖像,只需將
的圖像向右平移
個單位:
其中真命題的個數有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某投資公司計劃投資,
兩種金融產品,根據市場調查與預測,
產品的利潤
與投資金額
的函數關系為
,
產品的利潤
與投資金額
的函數關系為
.(注:利潤與投資金額單位:萬元)
(1)該公司已有100萬元資金,并全部投入,
兩種產品中,其中
萬元資金投入
產品,試把
,
兩種產品利潤總和表示為
的函數,并寫出定義域;
(2)試問:怎樣分配這100萬元資金,才能使公司獲得最大利潤?其最大利潤為多少萬元?
【答案】(1);(2)20,28.
【解析】
(1)設投入產品
萬元,則投入
產品
萬元,根據題目所給兩個產品利潤的函數關系式,求得兩種產品利潤總和的表達式.(2)利用基本不等式求得利潤的最大值,并利用基本不等式等號成立的條件求得資金的分配方法.
(1)其中萬元資金投入
產品,則剩余的
(萬元)資金投入
產品,
利潤總和為:
,
(2)因為,
所以由基本不等式得:,
當且僅當時,即:
時獲得最大利潤28萬.
此時投入A產品20萬元,B產品80萬元.
【點睛】
本小題主要考查利用函數求解實際應用問題,考查利用基本不等式求最大值,屬于中檔題.
【題型】解答題
【結束】
20
【題目】已知曲線.
(1)求曲線在處的切線方程;
(2)若曲線在點處的切線與曲線
相切,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com