【題目】如圖,四棱柱中,側棱
底面
,
,
,
,
,
為
棱的中點.
(1)證明;
(2)求二面角的余弦值;
(3)設點在線段
上,且直線
與平面
所成角的正弦值為
,求線段
的長.
【答案】(1)見證明;(2);(3)
【解析】
(Ⅰ)以點為原點建立空間直角坐標系,寫出點的坐標,寫出向量
,
,計算兩向量的數量積即可證明垂直(Ⅱ)利用向量的坐標,分別求出平面
的法向量,平面
的法向量,即可計算二面角的余弦值(III)設
,寫出
,求平面
的一個法向量,利用線面角公式寫出直線
與平面
所成角的正弦值且為
,可解出
,即可求解線段
的長.
(I)以點為原點建立空間直角坐標系,如圖,
依題意得,
,
,
,
,
.
則,
,
而.
所以.
(II),
,
設平面的法向量為
,則
,
即,取
.
設平面的法向量為
,則
,
即,取
.
,
所以二面角的余弦值為
.
(III),
,
設,有
.
取為平面
的一個法向量,
設為直線
與平面
所成的角,
則
.
于是,解得
.
所以.
所以線段的長為
.
科目:高中數學 來源: 題型:
【題目】設函數f(x)在(-∞,+∞)上有意義,且對于任意的x,y∈R,有|f(x)-f(y)|<|x-y|并且函數f(x+1)的對稱中心是(-1,0),若函數g(x)-f(x)=x,則不等式g(2x-x2)+g(x-2)<0的解集是( ).
A.B.
C.,
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】小李在做一份調查問卷,共有4道題,其中有兩種題型,一種是選擇題,共2道,另一種是填空題,共2道.
(1)小李從中任選2道題解答,每一次選1題(不放回),求所選的題不是同一種題型的概率;
(2)小李從中任選2道題解答,每一次選1題(有放回),求所選的題不是同一種題型的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列{an}是公差為2的等差數列,數列{bn}滿足b1=1,b2=2,且anbn+bn=nbn+1.
(1)求數列{an},{bn}的通項公式;
(2)設數列{cn}滿足,數列{cn}的前n項和為Tn,若不等式(-1)nλ<Tn+
對一切n∈N*恒成立,求實數λ的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】正△ABC的邊長為2, CD是AB邊上的高,E、F分別是AC和BC的中點(如圖(1)).現將△ABC沿CD翻成直二面角A-DC-B(如圖(2)).在圖(2)中:
(1)求證:AB∥平面DEF;
(2)在線段BC上是否存在一點P,使AP⊥DE?證明你的結論;
(3)求二面角E-DF-C的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若實數,
滿足
,則
的最小值是( )
A. 0 B. C. -6 D. -3
【答案】C
【解析】
畫出可行域,向上平移目標函數到可行域邊界的位置,由此求得目標函數的最小值.
畫出可行域如下圖所示,由圖可知,目標函數在點
處取得最小值為
.故選C.
【點睛】
本小題主要考查線性規劃的知識,考查線性目標函數的最值的求法,考查數形結合的數學思想方法,屬于基礎題.畫可行域時,要注意判斷不等式所表示的范圍是在直線的哪個方位,不一定是三條直線圍成的三角形.還要注意目標函數化成斜截式后,截距和目標函數的對應關系,截距最大時,目標函數不一定取得最大值,可能取得最小值.
【題型】單選題
【結束】
12
【題目】已知,
是橢圓
長軸上的兩個端點,
,
是橢圓上關于
軸對稱的兩點,直線
,
的斜率分別為
,若橢圓的離心率為
,則
的最小值為( )
A. 1 B. C.
D. 2
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平行四邊形中,
,
,以
為折痕將△
折起,使點
到達點
的位置,且
.
(1)證明:平面平面
;
(2)為線段
上一點,
為線段
上一點,且
,求三棱錐
的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com