【題目】【2018江西撫州市高三八校聯考】如圖,在三棱錐中,
,
,
,
,平面
平面
,
為
的中點.
(I)求證: 平面
;
(II)求直線與平面
所成角的正弦值.
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)是定義在R上的偶函數,對于x∈R,都有f(x+4)=f(x)+f(2)成立,當x1,x2∈[0,2]且x1≠x2時,都有 給出下列四個命題:
①f(﹣2)=0;
②直線x=﹣4是函數y=f(x)的圖象的一條對稱軸;
③函數y=f(x)在[4,6]上為減函數;
④函數y=f(x)在(﹣8,6]上有四個零點.
其中所有正確命題的序號為_____.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某石化集團獲得了某地深海油田區塊的開采權,集團在該地區隨機初步勘探了部分幾口井,取得了地質資料.進入全面勘探時期后,集團按網絡點來布置井位進行全面勘探,由于勘探一口井的費用很高,如果新設計的井位與原有井位重合或接近,便利用舊井的地質資料,不必打這口新井,以節約勘探費用,勘探初期數據資料見如表:
(參考公式和計算結果:
,
,
,
)
(1)1~6號舊井位置線性分布,借助前5組數據求得回歸直線方程為,求
的值,并估計
的預報值.
(2)現準備勘探新井,若通過1,3,5,7號并計算出的
,
的值(
,
精確到0.01)相比于(1)中的
,
,值之差不超過10%,則使用位置最接近的已有舊井
,否則在新位置打開,請判斷可否使用舊井?
(3)設出油量與勘探深度的比值不低于20的勘探井稱為優質井,那么在原有6口井中任意勘探4口井,求勘探優質井數
的分布列與數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高三年級學生參加社區服務次數進行統計,隨機抽取M名學生作為樣本,得到這M名學生參加社區服務的次數,根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
(1)求出表中M,p及圖中a的值;
(2)若該校高三學生有240人,試估計高三學生參加社區服務的次數在區間(10,15)內的人數;
(3)在所取樣本中,從參加社區服務的次數不少于20次的學生中任選2人,求至多一人參加社區服務次數在區間[25,30)內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓 上的點到橢圓一個焦點的距離的最大值是最小值的
倍,且點
在橢圓
上.
(Ⅰ)求橢圓的方程;
(Ⅱ)過點任作一條直線
,
與橢圓
交于不同于
點的
、
兩點,
與直線
交于
點,記直線
、
、
的斜率分別為
、
、
.試探究
與
的關系,并證明你的結論.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年12月,針對國內天然氣供應緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節約能源的攻堅戰.某研究人員為了了解天然氣的需求狀況,對該地區某些年份天然氣需求量進行了統計,并繪制了相應的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需示量 (單位:千萬立方米)與年份
(單位:年)之間的關系.并且已知
關于
的線性回歸方程是
,試確定
的值,并預測2018年該地區的天然氣需求量;
(Ⅱ)政府部門為節約能源出臺了《購置新能源汽車補貼方案》,該方案對新能源汽車的續航里程做出了嚴格規定,根據續航里程的不同,將補貼金額劃分為三類,A類:每車補貼1萬元,B類:每車補貼2.5萬元,C類:每車補貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補貼情況進行了統計,結果如下表:
類型 |
|
|
|
車輛數目 | 10 | 20 | 30 |
為了制定更合理的補貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進一步跟蹤調查.若抽取的2輛車享受的補貼金額之和記為“”,求
的分布列及期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在極坐標系中曲線的極坐標方程為:
,以極點為坐標原點,以極軸為
軸的正半軸建立直角坐標系,曲線
的參數方程為:
(
為參數),點
.
(1)求出曲線的直角坐標方程和曲線
的普通方程;
(2)設曲線與曲線
相交于
兩點,求
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com