【題目】2017年12月,針對國內天然氣供應緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節約能源的攻堅戰.某研究人員為了了解天然氣的需求狀況,對該地區某些年份天然氣需求量進行了統計,并繪制了相應的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需示量 (單位:千萬立方米)與年份
(單位:年)之間的關系.并且已知
關于
的線性回歸方程是
,試確定
的值,并預測2018年該地區的天然氣需求量;
(Ⅱ)政府部門為節約能源出臺了《購置新能源汽車補貼方案》,該方案對新能源汽車的續航里程做出了嚴格規定,根據續航里程的不同,將補貼金額劃分為三類,A類:每車補貼1萬元,B類:每車補貼2.5萬元,C類:每車補貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補貼情況進行了統計,結果如下表:
類型 |
|
|
|
車輛數目 | 10 | 20 | 30 |
為了制定更合理的補貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進一步跟蹤調查.若抽取的2輛車享受的補貼金額之和記為“”,求
的分布列及期望.
科目:高中數學 來源: 題型:
【題目】祖暅是我國齊梁時代的數學家,是祖沖之的兒子,他提出了一條原理:“冪勢既同,則積不容易.”這里的“冪”指水平截面的面積.“勢”指高,這句話的意思是:兩個等高的幾何體若在所有等高處的水平截面的面積相等,則這兩個幾何體體積相等。于是可把半徑相等的半球(底面在下)和圓柱(圓柱高等于半徑)放在同一水平面上,圓柱里再放一個半徑和高都與圓柱相等的圓錐(錐尖朝下),考察圓柱里被圓錐截剩的立體,這樣在同一高度用平行平面截得的半球截面和圓柱中剩余立體截得的截面面積相等,因此半球的體積等于圓柱中剩余立體的體積.設由橢圓所圍成的平面圖形繞
軸旋轉一周后,得一橄欖狀的幾何體(如圖,稱為“橢球體”),請類比以上所介紹的應用祖暅原理求球體體積的做法求這個橢球體的體積.其體積等于________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2018江西撫州市高三八校聯考】如圖,在三棱錐中,
,
,
,
,平面
平面
,
為
的中點.
(I)求證: 平面
;
(II)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年12月,針對國內天然氣供應緊張的問題,某市政府及時安排部署,加氣站采取了緊急限氣措施,全市居民打響了節約能源的攻堅戰.某研究人員為了了解天然氣的需求狀況,對該地區某些年份天然氣需求量進行了統計,并繪制了相應的折線圖.
(Ⅰ)由折線圖可以看出,可用線性回歸模型擬合年度天然氣需求量 (單位:千萬立方米)與年份
(單位:年)之間的關系.并且已知
關于
的線性回歸方程是
,試確定
的值,并預測2018年該地區的天然氣需求量;
(Ⅱ)政府部門為節約能源出臺了《購置新能源汽車補貼方案》,該方案對新能源汽車的續航里程做出了嚴格規定,根據續航里程的不同,將補貼金額劃分為三類,A類:每車補貼1萬元,B類:每車補貼2.5萬元,C類:每車補貼3.4萬元.某出租車公司對該公司60輛新能源汽車的補貼情況進行了統計,結果如下表:
為了制定更合理的補貼方案,政府部門決定利用分層抽樣的方式了解出租車公司新能源汽車的補貼情況,在該出租車公司的60輛車中抽取6輛車作為樣本,再從6輛車中抽取2輛車進一步跟蹤調查,求恰好有1輛車享受3.4萬元補貼的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓:
與拋物線
:
相交于
,
兩點,分別以點
,
為切點作圓
的切線.若切線恰好都經過拋物線
的焦點
,則
( )
A. B.
C.
D.
【答案】A
【解析】由題得設A,
,聯立圓E和拋物線得:
,代入點A得
,又AF為圓的切線,故
,由拋物線得定義可知:AF=
,故
化簡得:
,將點A代入圓得:
,而
=
,故
故選A
點睛:此題幾何關系較為復雜,我們根據問題可知借此題關鍵為找到p和r的關系,我們可根據圓和拋物線相交結合拋物線的焦點弦長結論綜合計算可得其關系,從而求解
【題型】單選題
【結束】
12
【題目】已知函數在點
處的切線為
,若直線
在
軸上的截距恒小于
,則實數
的取值范圍是( )
A. B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com