【題目】已知拋物線與
軸交于點
,直線
與拋物線
交于點
,
兩點.直線
,
分別交橢圓
于點
、
(
,
與
不重合)
(1)求證:;
(2)若,求直線
的斜率
的值;
(3)若為坐標原點,直線
交橢圓
于
,
,若
,且
,則
是否為定值?若是,求出定值;若不是,請說明理由.
【答案】(1)證明見解析;(2);(3)是定值,
為定值10.
【解析】
(1) 直線和拋物線方程聯立,根據根與系數關系、斜率公式可以計算出
,也就證明出
;
(2)設出直線的斜率,直線
的斜率,求出它們的直線方程,通過解一元二次方程組求出
,
的坐標,最后利用面積公式求出
的表達式,同理求出
的表達式,最后求出直線
的斜率
的值;
(3) 設,
,根據余弦定理和
,可以得到又
,
.通過對兩個等式進行移項相乘和兩個等式相加,最后可以求出
的值為定值.
解:(1)由題意知,直線的方程為
.
由得
,
設,
,則
,
是上述方程的兩個實根,
于是,
.
又點的坐標為
,
所以
故,即
.
(2)設直線的斜率為
,則直線
的方程為
,
由,解得
,或
,則點
的坐標為
.
又直線的斜率為
,同理可得點
的坐標為
.
于是,.
由得
,
解得或
,則點
的坐標為
.
又直線的斜率為,同理可得點
的坐標
.
于是,.
因此,.
由題意知,解得或
.
又由點,
的坐標可知,
,所以
.
(3)設,
,四邊形
為平行四邊形,
由余弦定理有,
,
兩式相加得.
又.
又,
,
上面兩式移項相乘得,
上面兩式相加得.
所以.
因此為定值10.
科目:高中數學 來源: 題型:
【題目】隨著“北京八分鐘”在韓國平昌冬奧會驚艷亮相,冬奧會正式進入了北京周期,全社會對冬奧會的熱情空前高漲.
(1)為迎接冬奧會,某社區積極推動冬奧會項目在社區青少年中的普及,并統計了近五年來本社區冬奧項目青少年愛好者的人數(單位:人)與時間
(單位:年),列表如下:
依據表格給出的數據,是否可用線性回歸模型擬合與
的關系,請計算相關系數
并加以說明(計算結果精確到0.01).
(若,則線性相關程度很高,可用線性回歸模型擬合)
附:相關系數公式,參考數據
.
(2)某冰雪運動用品專營店為吸引廣大冰雪愛好者,特推出兩種促銷方案.
方案一:每滿600元可減100元;
方案二:金額超過600元可抽獎三次,每次中獎的概率同為 ,且每次抽獎互不影響,中獎1次打9折,中獎2次打8折,中獎3次打7折. v
兩位顧客都購買了1050元的產品,并且都選擇第二種優惠方案,求至少有一名顧客比選擇方案一更優惠的概率;
②如果你打算購買1000元的冰雪運動用品,請從實際付款金額的數學期望的角度分析應該選擇哪種優惠方案.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩點分別在
軸和
軸上運動,且
,若動點
滿足
.
(1)求出動點P的軌跡對應曲線C的標準方程;
(2)一條縱截距為2的直線與曲線C交于P,Q兩點,若以PQ直徑的圓恰過原點,求出直線方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了紀念“一帶一路”倡議提出五周年,某城市舉辦了一場知識競賽,為了了解市民對“一帶一路”知識的掌握情況,從回收的有效答卷中按青年組和老年組各隨機抽取了40份答卷,發現成績都在內,現將成績按區間
,
,
,
,
進行分組,繪制成如下的頻率分布直方圖.
青年組
中老年組
(1)利用直方圖估計青年組的中位數和老年組的平均數;
(2)從青年組,
的分數段中,按分層抽樣的方法隨機抽取5份答卷,再從中選出3份答卷對應的市民參加政府組織的座談會,求選出的3位市民中有2位來自
分數段的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線過點
且與直線
垂直,直線
與
軸交于點
,點
與點
關于
軸對稱,動點
滿足
.
(Ⅰ)求動點的軌跡
的方程;
(Ⅱ)過點的直線
與軌跡
相交于
兩點,設點
,直線
的斜率分別為
,問
是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】團體購買公園門票,票價如下表:
購票人數 | 1~50 | 51~100 | 100以上 |
門票價格 | 13元/人 | 11元/人 | 9元/人 |
現某單位要組織其市場部和生產部的員工游覽該公園,若按部門作為團體,選擇兩個不同的時間分別購票游覽公園,則共需支付門票費為1290元;若兩個部門合在一起作為一個團體,同一時間購票游覽公園,則需支付門票費為990元,那么這兩個部門的人數之差為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為培養學生的閱讀習慣,某校開展了為期一年的“弘揚傳統文化,閱讀經典名著”活動. 活動后,為了解閱讀情況,學校統計了甲、乙兩組各10名學生的閱讀量(單位:本),統計結果用莖葉圖記錄如下,乙組記錄中有一個數據模糊,無法確認,在圖中以a表示.
(Ⅰ)若甲組閱讀量的平均值大于乙組閱讀量的平均值,求圖中a的所有可能取值;
(Ⅱ)將甲、乙兩組中閱讀量超過15本的學生稱為“閱讀達人”. 設,現從所有的“閱讀達人”里任取2人,求至少有1人來自甲組的概率;
(Ⅲ)記甲組閱讀量的方差為. 若在甲組中增加一個閱讀量為10的學生,并記新得到的甲組閱讀量的方差為
,試比較
,
的大小.(結論不要求證明)
(注:,其中
為數據
的平均數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com