精英家教網 > 高中數學 > 題目詳情

【題目】2018年的政府工作報告強調,要樹立綠水青山就是金山銀山理念,以前所未有的決心和力度加強生態環境保護.某地科技園積極檢查督導園區內企業的環保落實情況,并計劃采取激勵措施引導企業主動落實環保措施,下圖給出的是甲、乙兩企業2012年至2017年在環保方面投入金額(單位:萬元)的柱狀圖.

(Ⅰ)分別求出甲、乙兩企業這六年在環保方面投入金額的平均數;(結果保留整數)

(Ⅱ)園區管委會為盡快落實環保措施,計劃對企業進行一定的獎勵,提出了如下方案:若企業一年的環保投入金額不超過200萬元,則該年不獎勵;若企業一年的環保投入金額超過200萬元,不超過300萬元,則該年獎勵20萬元;若企業一年的環保投入金額超過300萬元,則該年獎勵50萬元.

(ⅰ)分別求出甲、乙兩企業這六年獲得的獎勵之和;

(ⅱ)現從甲企業這六年中任取兩年對其環保情況作進一步調查,求這兩年獲得的獎勵之和不低于70萬元的概率.

【答案】(1)見解析;(2) (。190萬元,110萬元; (ⅱ).

【解析】(Ⅰ)由柱狀圖可知,甲企業這六年在環保方面的投入金額分別為,

其平均數為(萬元);

乙企業這六年在環保方面的投入金額分別為,

其平均數為(萬元).

(Ⅱ)(ⅰ)根據題意可知,企業每年所獲得的環保獎勵(單位:萬元)是關于該年環保投入(單位:萬元)的分段函數,即;

所以甲企業這六年獲得的獎勵之和為:(萬元);

乙企業這六年獲得的獎勵之和為:(萬元).

(ⅱ)由(。┲灼髽I這六年獲得的獎金數如下表:

年份

2012年

2013年

2014年

2015年

2016年

2017年

獎勵(單位:萬元)

0

20

50

50

20

50

獎勵共分三個等級,其中獎勵0萬元的只有2012年,記為;

獎勵20萬元的有2013年,2016年,記為

獎勵50萬元的有2014年,2015年和2017年,記為.

故從這六年中任意選取兩年,所有的情況為:

,,,,,,,

,,,,,共15種.

其中獎勵之和不低于70萬元的取法為:,,,,,,共9種.

故所求事件的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知點為橢圓上任意一點,直線與圓交于兩點,點為橢圓的左焦點.

(Ⅰ)求橢圓的離心率及左焦點的坐標;

(Ⅱ)求證:直線與橢圓相切;

(Ⅲ)判斷是否為定值,并說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓)的左,右頂點分別為,長軸長為,且經過點.

1)求橢圓的標準方程;

2)若為橢圓上異于的任意一點,證明:直線,的斜率的乘積為定值;

3)已知兩條互相垂直的直線都經過橢圓的右焦點,與橢圓交于,四點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】艾滋病是一種危害性極大的傳染病,由感染艾滋病病毒病毒引起,它把人體免疫系統中最重要的CD4T淋巴細胞作為主要攻擊目標,使人體喪失免疫功能下表是近八年來我國艾滋病病毒感染人數統計表:

年份

2011

2012

2013

2014

2015

2016

2017

2018

年份代碼x

1

2

3

4

5

6

7

8

感染者人數單位:萬人

85

請根據該統計表,畫出這八年我國艾滋病病毒感染人數的折線圖;

請用相關系數說明:能用線性回歸模型擬合yx的關系;

建立y關于x的回歸方程系數精確到,預測2019年我國艾滋病病毒感染人數.

參考數據:;,,

參考公式:相關系數,

回歸方程中, ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數軸于兩點(不重合),交軸于. 三點.下列說法正確的是( )

圓心在直線上;

的取值范圍是

半徑的最小值為;

存在定點,使得圓恒過點.

A. ①②③B. ①③④C. ②③D. ①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】太極圖被稱為中華第一圖.廣為人知的太極圖,其形狀如陰陽兩魚互抱在一起,因而被稱為陰陽魚太極魚.已知,下列命題中:①在平面直角坐標系中表示的區域的面積為;②,使得;③,都有成立;④設點,則的取值范圍是.其中真命題的個數為(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法正確的個數是( ).

①“若,則,中至少有一個不小于2”的逆命題是真命題;

②命題“設,若,則”是一個真命題;

③命題,,則的必要不充分條件;

④命題“,使得”的否定是:“,均有”.

A.4B.3C.2D.1

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為提高產品質量,某企業質量管理部門經常不定期地抽查產品進行檢測,現在某條生產線上隨機抽取100個產品進行相關數據的對比,并對每個產品進行綜合評分(滿分100分),將每個產品所得的綜合評分制成如圖所示的頻率分布直方圖.記綜合評分為80分及以上的產品為一等品.

1)求圖中的值,并求綜合評分的中位數;

2)用樣本估計總體,以頻率作為概率,按分層抽樣的思想,先在該條生產線中隨機抽取5個產品,再從這5個產品中隨機抽取2個產品記錄有關數據,求這2個產品中恰有一個一等品的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓過點,且它的焦距是短軸長的.

1)求橢圓的方程.

2)若,是橢圓上的兩個動點(兩點不關于軸對稱),為坐標原點,,的斜率分別為,,問是否存在非零常數,使當時,的面積為定值?若存在,求的值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视