【題目】已知數列的通項公式為
,其中
且
.
(1)若是正項數列,求
的取值范圍;
(2)若,數列
滿足
,且對任意
,均有
,寫出所有滿足條件的
的值;
(3)若,數列
滿足
,其前n項和為
,且使
的i和j至少4組,
、
、……、
中至少有5個連續項的值相等,其它項的值均不相等,求
,
滿足的充要條件并加以證明.
【答案】(1) (2)
(3)
證明見解析.
【解析】
(1)通過函數是與x軸交于
兩點且開口向上的拋物線可知,只需知
均在1的左邊即可;
(2)通過化簡可知
,排除
可知
,此時可知對于
而言,當
時
單調遞減,當
時
單調遞增,進而解不等式組
即得結論;
(3)通過及
可知
,結合
可知
,從而可知
的最小值為5,通過
中至少5個連續的值相等可知,且其他值不相等
,進而可得
的值為8.
(1)由題意,,
,
使數列為正項數列,則
,故
的取值范圍是
(2)
當時,
均單調遞增,不合題意
當時,對于
可知,當
時
單調遞減,當
時
單調遞增,由題意可知
聯立不等式,解得
(3)
又,
或
此時的的四個值為1,2,3,4,故
又
中至少5個連續的值相等
不妨設,則
因為當時,
,而使其他值不相等,則
故
科目:高中數學 來源: 題型:
【題目】已知橢圓E:過點(0,1)且離心率
.
(Ⅰ)求橢圓E的方程;
(Ⅱ)設動直線l與兩定直線l1:x﹣y=0和l2:x+y=0分別交于P,Q兩點.若直線l總與橢圓E有且只有一個公共點,試探究:△OPQ的面積是否存在最小值?若存在,求出該最小值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為響應綠色出行,某市在推出“共享單車”后,又推出“新能源分時租賃汽車”.其中一款新能源分時租賃汽車,每次租車收費的標準由兩部分組成:①根據行駛里程數按1元/公里計費;②行駛時間不超過分時,按
元/分計費;超過
分時,超出部分按
元/分計費.已知王先生家離上班地點
公里,每天租用該款汽車上、下班各一次.由于堵車、紅綠燈等因素,每次路上開車花費的時間
(分)是一個隨機變量.現統計了
次路上開車花費時間,在各時間段內的頻數分布情況如下表所示:
時間 | ||||
頻數 |
將各時間段發生的頻率視為概率,每次路上開車花費的時間視為用車時間,范圍為分.(1)寫出王先生一次租車費用
(元)與用車時間
(分)的函數關系式;(2)若王先生一次開車時間不超過
分為“路段暢通”,設
表示3次租用新能源分時租賃汽車中“路段暢通”的次數,求的分布列和期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設點分別是棱長為2的正方體
的棱
的中點.如圖,以
為坐標原點,射線
、
、
分別是
軸、
軸、
軸的正半軸,建立空間直角坐標系.
(1)求向量與
的數量積;
(2)若點分別是線段
與線段
上的點,問是否存在直線
,
平面
?若存在,求點
的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列的通項公式為
,其中
,
、
.
(1)試寫出一組、
的值,使得數列
中的各項均為正數.
(2)若,
,數列
滿足
,且對任意的
(
),均有
,寫出所有滿足條件的
的值.
(3)若,數列
滿足
,其前
項和為
,且使
(
、
,
)的
和
有且僅有
組,
、
、…、
中有至少
個連續項的值相等,其它項的值均不相等,求
、
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于雙曲線,若點P(x0,y0)滿足
,則稱P在
的外部,若點P(x0,y0)滿足
>1,則稱
在的內部;
(1)若直線y=kx+1上的點都在C(1,1)的外部,求k的取值范圍;
(2)若C(a,b)過點(2,1),圓x2+y2=r2(r>0)在C(a,b)內部及C(a,b)上的點構成的圓弧長等于該圓周長的一半,求b、r滿足的關系式及r的取值范圍;
(3)若曲線|xy|=mx2+1(m>0)上的點都在C(a,b)的外部,求m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數,給出以下四個命題:(1)當
時,
單調遞減且沒有最值;(2)方程
一定有實數解;(3)如果方程
(
為常數)有解,則解得個數一定是偶數;(4)
是偶函數且有最小值.其中假命題的序號是____________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:1(a>b>0)的左右焦點分別為F1,F2,離心率為
,A為橢圓C上一點,且AF2⊥F1F2,且|AF2|
.
(1)求橢圓C的方程;
(2)設橢圓C的左右頂點為A1,A2,過A1,A2分別作x軸的垂線 l1,l2,橢圓C的一條切線l:y=kx+m(k≠0)與l1,l2交于M,N兩點,試探究是否為定值,并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,若在區間
內有且只有一個實數
,使得
成立,則稱函數
在區間
內具有唯一零點.
(1)判斷函數在區間
內是否具有唯一零點,說明理由:
(2)已知向量,
,
,證明
在區間
內具有唯一零點.
(3)若函數在區間
內具有唯一零點,求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com