精英家教網 > 高中數學 > 題目詳情

【題目】函數y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則 + 的最小值為(
A.3+2
B.3+2
C.7
D.11

【答案】A
【解析】解:函數y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A(﹣1,﹣1),

∵點A在直線mx+ny+1=0上,其中m>0,n>0,∴﹣m﹣n+1=0,即m+n=1.

+ =(m+n) =3+ + ≥3+2 =3+2 ,當且僅當n= m=2﹣ 時取等號.

故選:A.

函數y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A(﹣1,﹣1),可得m+n=1.于是 + =(m+n) =3+ + ,再利用基本不等式的性質即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在等差數列{an}中,a1=1,又a1 , a2 , a5成公比不為1的等比數列. (Ⅰ)求數列{an}的公差;
(Ⅱ)設bn= ,求數列{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性;
(3)求證:f(x)>0.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在長方體ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,E為BB1中點. (Ⅰ)證明:AC⊥D1E;
(Ⅱ)求DE與平面AD1E所成角的正弦值;
(Ⅲ)在棱AD上是否存在一點P,使得BP∥平面AD1E?若存在,求DP的長;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}是首項為正數的等差數列,a1a2=3,a2a3=15.
(1)求數列{an}的通項公式;
(2)設bn=(an+1)2 ,求數列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某營養學家建議:高中生每天的蛋白質攝入量控制在[60,90](單位:克),脂肪的攝入量控制在[18,27](單位:克).某學校食堂提供的伙食以食物A和食物B為主,1千克食物A含蛋白質60克,含脂肪9克,售價20元;1千克食物B含蛋白質30克,含脂肪27克,售價15元. (Ⅰ)如果某學生只吃食物A,判斷他的伙食是否符合營養學家的建議,并說明理由;
(Ⅱ)為了花費最低且符合營養學家的建議,學生需要每天同時食用食物A和食物B各多少千克?并求出最低需要花費的錢數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若α,β∈(0, ),sin( )=﹣ ,cos( )= ,則α+β=

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數y= 的圖象大致是( )
A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视