【題目】已知函數f(x)= .
(1)求函數f(x)的定義域;
(2)判斷函數f(x)的奇偶性;
(3)求證:f(x)>0.
【答案】
(1)解:由2x﹣1≠0得x≠0,∴函數f(x)的定義域為(﹣∞,0)∪(0,+∞)
(2)解:∵f(x)= =
∴f(﹣x)= =
∴函數f(x)為定義域上的偶函數.
(3)證明:當x>0時,2x>1
∴2x﹣1>0,
∴ ,
∴ >0
∵f(x)為定義域上的偶函數
∴當x<0時,f(x)>0
∴f(x)>0成立
【解析】(1)由分母不能為零得2x﹣1≠0求解即可.要注意定義域要寫成集合或區間的形式.(2)在(1)的基礎上,只要再判斷f(x)與f(﹣x)的關系即可,但要注意作適當的變形.(3)在(2)的基礎上要證明對稱區間上成立可即可.不妨證明:當x>0時,則有2x>1進而有2x﹣1>0, 然后得到
>0.再由奇偶性得到對稱區間上的結論.
【考點精析】解答此題的關鍵在于理解函數的定義域及其求法的相關知識,掌握求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②
是分式函數時,定義域是使分母不為零的一切實數;③
是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零,以及對函數的值域的理解,了解求函數值域的方法和求函數最值的常用方法基本上是相同的.事實上,如果在函數的值域中存在一個最。ù螅⿺担@個數就是函數的最。ù螅┲担虼饲蠛瘮档淖钪蹬c值域,其實質是相同的.
科目:高中數學 來源: 題型:
【題目】設函數f(x)的定義域為R,如果存在函數g(x),使得f(x)≥g(x)對于一切實數x都成立,那么稱g(x)為函數f(x)的一個承托函數.已知函數f(x)=ax2+bx+c的圖象經過點(﹣1,0).
(1)若a=1,b=2.寫出函數f(x)的一個承托函數(結論不要求證明);
(2)判斷是否存在常數a,b,c,使得y=x為函數f(x)的一個承托函數,且f(x)為函數 的一個承托函數?若存在,求出a,b,c的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正三棱柱(底面是正三角形的直棱柱)ABC﹣A1B1C1中,已知AB=2,CC1= ,則異面直線AB1和BC1所成角的正弦值為( )
A.
B.
C.
D.1
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓C: +
=1(a>b>0)的右焦點為F,右頂點、上頂點分別為點A、B,且|AB|=
|BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若斜率為2的直線l過點(0,2),且l交橢圓C于P、Q兩點,OP⊥OQ.求直線l的方程及橢圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量 =(cosα,sinα),
=(cosβ,sinβ),0<β<α<π.
(1)若| ﹣
|=
,求證:
⊥
;
(2)設c=(0,1),若 +
=c,求α,β的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數y=loga(x+2)﹣1(a>0,a≠1)的圖象恒過定點A,若點A在直線mx+ny+1=0上,其中m>0,n>0,則 +
的最小值為( )
A.3+2
B.3+2
C.7
D.11
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是菱形,PA⊥底面ABCD,M是棱PC上一點.若PA=AC=a,則當△MBD的面積為最小值時,直線AC與平面MBD所成的角為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=loga(1+x)﹣loga(1﹣x)(a>0且a≠1),
(1)求函數f(x)的定義域;
(2)若關于x的方程|f(x)|=2的解集為 ,求a的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com