【題目】如圖,橢圓C: +
=1(a>b>0)的右焦點為F,右頂點、上頂點分別為點A、B,且|AB|=
|BF|.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)若斜率為2的直線l過點(0,2),且l交橢圓C于P、Q兩點,OP⊥OQ.求直線l的方程及橢圓C的方程.
【答案】解:(Ⅰ)由已知 , 即
,4a2+4b2=5a2 , 4a2+4(a2﹣c2)=5a2 , ∴
.
(Ⅱ)由(Ⅰ)知a2=4b2 , ∴橢圓C: .
設P(x1 , y1),Q(x2 , y2),
直線l的方程為y﹣2=2(x﹣0),即2x﹣y+2=0.
由 ,
即17x2+32x+16﹣4b2=0. .
,
.
∵OP⊥OQ,∴ ,
即x1x2+y1y2=0,x1x2+(2x1+2)(2x2+2)=0,5x1x2+4(x1+x2)+4=0.
從而 ,解得b=1,
∴橢圓C的方程為
【解析】(Ⅰ)利用|AB|= |BF|,求出a,c的關系,即可求橢圓C的離心率;(Ⅱ)直線l的方程為y﹣2=2(x﹣0),即2x﹣y+2=0與橢圓C:
聯立,OP⊥OQ,可得
, 利用韋達定理,即可求出橢圓C的方程.
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的正方形ABCD所在平面與三角形CDE所在的平面相交于CD,AE⊥平面CDE,且AE=1.
(1)求證:AB∥平面CDE;
(2)求證:DE⊥平面ABE;
(3)求點A到平面BDE的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知A(4,﹣3),B(2,﹣1)和直線l:4x+3y﹣2=0.
(1)求在直角坐標平面內滿足|PA|=|PB|的點P的方程;
(2)求在直角坐標平面內一點P滿足|PA|=|PB|且點P到直線l的距離為2的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F為拋物線y2=x的焦點,點A,B在該拋物線上且位于x軸的兩側,
=2(其中O為坐標原點),則△ABO與△AFO面積之和的最小值是( )
A.2
B.3
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:k2﹣8k﹣20≤0,命題q:方程 =1表示焦點在x軸上的雙曲線. (Ⅰ)命題q為真命題,求實數k的取值范圍;
(Ⅱ)若命題“p∨q”為真,命題“p∧q”為假,求實數k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}是首項為正數的等差數列,a1a2=3,a2a3=15.
(1)求數列{an}的通項公式;
(2)設bn=(an+1)2 ,求數列{bn}的前n項和Tn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】記所有非零向量構成的集合為V,對于 ,
∈V,
≠
,定義V(
,
)=|x∈V|x
=x
|
(1)請你任意寫出兩個平面向量 ,
,并寫出集合V(
,
)中的三個元素;
(2)請根據你在(1)中寫出的三個元素,猜想集合V( ,
)中元素的關系,并試著給出證明;
(3)若V( ,
)=V(
,
),其中
≠
,求證:一定存在實數λ1 , λ2 , 且λ1+λ2=1,使得
=λ1
+λ2
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com