精英家教網 > 高中數學 > 題目詳情

【題目】已知數列{an}的首項為1,前n項和Sn與an之間滿足an= (n≥2,n∈N*
(1)求證:數列{ }是等差數列;
(2)求數列{an}的通項公式;
(3)設存在正整數k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,求k的最大值.

【答案】
(1)證明:∵數列{an}的前n項和Sn與an之間滿足an= (n≥2,n∈N*),

∴Sn﹣Sn﹣1= ,化為: =2.

∴數列{ }是等差數列,公差為2,首項為1


(2)解:由(1)可得: =1+2(n﹣1)=2n﹣1,可得Sn=

∴n≥2時,an=Sn﹣Sn﹣1=

∴an=


(3)解:∵1+Sn=1+ =

∴Tn=(1+S1)(1+S1)…(1+Sn)= × ×…× × ×…× = ×…× ×(2n+1)

=

可得:Tn

∴存在正整數k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,則k的最大值為1.


【解析】(1)數列{an}的前n項和Sn與an之間滿足an= (n≥2,n∈N*),可得Sn﹣Sn﹣1= ,化為: =2.即可證明.(2)由(1)可得: =1+2(n﹣1)=2n﹣1,可得Sn= .n≥2時,an=Sn﹣Sn﹣1;n=1時,a1=1.(3)1+Sn=1+ = .可得Tn=(1+S1)(1+S1)…(1+Sn)= × ×…× × ×…× = ×…× ×(2n+1)= ,可得:Tn .即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x2﹣2x,設
(1)求函數g(x)的表達式,并求函數g(x)的定義域;
(2)判斷函數g(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市一高中經過層層上報,被國家教育部認定為2015年全國青少年足球特色學校.該校成立了特色足球隊,隊員來自高中三個年級,人數為50人.視力對踢足球有一定的影響,因而對這50人的視力作一調查.測量這50人的視力(非矯正視力)后發現他們的視力全部介于4.75和5.35之間,將測量結果按如下方式分成6組:第一組[4.75,4.85),第二組[4.85,4.95),…,第6組[5.25,5.35],如圖是按上述分組方法得到的頻率分布直方圖.又知:該校所在的省中,全省喜愛足球的高中生視力統計調查數據顯示:全省100000名喜愛足球的高中生的視力服從正態分布N(5.01,0.0064). 參考數據:若ξ~N(μ,σ2),則P(μ﹣σ<ξ≤μ+σ)=0.6826,
P(μ﹣2σ<ξ≤μ+2σ)=0.9544,P(μ﹣3σ<ξ≤μ+3σ)=0.9974.
(1)試評估該校特色足球隊人員在全省喜愛足球的高中生中的平均視力狀況;
(2)求這50名隊員視力在5.15以上(含5.15)的人數;
(3)在這50名隊員視力在5.15以上(含5.15)的人中任意抽取2人,該2人中視力排名(從高到低)在全省喜愛足球的高中生中前130名的人數記為ξ,求ξ的數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業生產甲、乙兩種產品均需用A,B兩種原料,已知每種產品各生產1噸所需原料及每天原料的可用限額如下表所示,如果生產1噸甲產品可獲利潤3萬元,生產1噸乙產品可獲利4萬元,則該企業每天可獲得最大利潤為萬元.

原料限額

A(噸)

3

2

12

B(噸)

1

2

8

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,棱柱ABCD﹣A1B1C1D1的底面是菱形.側棱長為5,平面ABCD⊥平面A1ACC1 , AB=3 ,∠BAD=60°,點E是△ABD的重心,且A1E=4.
(1)求證:平面A1DC1∥平面AB1C;
(2)求二面角B1﹣AC﹣B的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,內角A,B,C的對邊分別為a,b,c,已知 =
(1)求 的值
(2)若cosB= ,b=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數f(x)是定義在(﹣∞,+∞)上的增函數,實數a使得f(1﹣ax﹣x2)<f(2﹣a)對于任意x∈[0,1]都成立,則實數a的取值范圍是(
A.(﹣∞,1)
B.[﹣2,0]
C.(﹣2﹣2 ,﹣2+2
D.[0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,圓C的方程為(x﹣2)2+y2=1,點P在直線l:x+y+1=0上,若過點P存在直線m與圓C交于A,B兩點,且點A為PB中點,則點P的恒坐標的取值范圍是

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中,a1=3,a2=5,其前n項和為Sn滿足Sn+Sn2=2Sn1+2n1(n≥3,n∈N*)
(1)試求數列{an}的通項公式
(2)令bn= ,Tn是數列{bn}的前n項和.證明:對任意給定的m∈(0, ),均存在n0∈N*,使得當n≥n0時,Tn>m恒成立.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视