【題目】已知函數f(x)=x2﹣2x,設 .
(1)求函數g(x)的表達式,并求函數g(x)的定義域;
(2)判斷函數g(x)的奇偶性,并證明.
【答案】
(1)解:由f(x)=x2﹣2x,得f(x+1)=x2﹣1,
所以, ,定義域為{x|x∈R,且x≠0}
(2)解:結論:函數g(x)為奇函數.
證明:由(1)知,g(x)的定義域為{x|x≠0}關于原點對稱,
并且, ,
所以,函數g(x)為奇函數.
【解析】(1)由f(x)的解析式,表示出f(x+1),從而得到g(x)的解析式,寫出定義域,(2)由于g(x)的定義域關于原點對稱,且g(-x)=-g(x),即可判斷出g(x)為奇函數.
【考點精析】本題主要考查了函數的定義域及其求法和函數的奇偶性的相關知識點,需要掌握求函數的定義域時,一般遵循以下原則:①是整式時,定義域是全體實數;②
是分式函數時,定義域是使分母不為零的一切實數;③
是偶次根式時,定義域是使被開方式為非負值時的實數的集合;④對數函數的真數大于零,當對數或指數函數的底數中含變量時,底數須大于零且不等于1,零(負)指數冪的底數不能為零;偶函數的圖象關于y軸對稱;奇函數的圖象關于原點對稱才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐A﹣BCD中,△ABD,△BCD均為正三角形,且平面ABD⊥平面BCD,點O,M分別為棱BD,AC的中點,則異面直線AB與OM所成角的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學食堂定期從糧店以每噸1500元的價格購買大米,每次購進大米需支付運輸費 100元.食堂每天需用大米l噸,貯存大米的費用為每噸每天2元(不滿一天按一天計),假 定食堂每次均在用完大米的當天購買.
(1)該食堂隔多少天購買一次大米,可使每天支付的總費用最少?
(2)糧店提出價格優惠條件:一次購買量不少于20噸時,大米價格可享受九五折(即原價的95%),問食堂可否接受此優惠條件?請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求:
(1)直線PQ與CD所成角的大小
(2)四面體PCDQ的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在數列{an}中,已知a1=2,an+1=4an﹣3n+1,n∈N .
(1)設bn=an﹣n,求證:數列{bn}是等比數列;
(2)求數列{an}的前n項和Sn .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017高考特別強調了要增加對數學文化的考查,為此某校高三年級特命制了一套與數學文化有關的專題訓練卷(文、理科試卷滿分均為100分),并對整個高三年級的學生進行了測試.現從這些學生中隨機抽取了50名學生的成績,按照成績為 ,
,…,
分成了5組,制成了如圖所示的頻率分布直方圖(假定每名學生的成績均不低于50分).
(1)求頻率分布直方圖中的 的值,并估計所抽取的50名學生成績的平均數、中位數(同一組中的數據用該組區間的中點值代表);
(2)若高三年級共有2000名學生,試估計高三學生中這次測試成績不低于70分的人數;
(3)若利用分層抽樣的方法從樣本中成績不低于70分的三組學生中抽取6人,再從這6人中隨機抽取3人參加這次考試的考后分析會,試求后兩組中至少有1人被抽到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有一塊半徑為 (
是正常數)的半圓形空地,開發商計劃征地建一個矩形的游泳池
和其附屬設施,附屬設施占地形狀是等腰
,其中
為圓心,
,
在圓的直徑上,
,
,
在半圓周上,如圖.設
,征地面積為
,當
滿足
取得最大值時,開發效果最佳,開發效果最佳的角
和
的最大值分別為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設甲、乙兩人每次射擊命中目標的概率分別為 ,且各次射擊相互獨立,若按甲、乙、甲、乙…的次序輪流射擊,直到有一人擊中目標就停止射擊,則停止射擊時,甲射擊了兩次的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}的首項為1,前n項和Sn與an之間滿足an= (n≥2,n∈N*)
(1)求證:數列{ }是等差數列;
(2)求數列{an}的通項公式;
(3)設存在正整數k,使(1+S1)(1+S1)…(1+Sn)≥k 對于一切n∈N*都成立,求k的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com