【題目】已知命題p:x∈R,x2+1>m;命題q:指數函數f(x)=(3﹣m)x是增函數.若“p∧q”為假命題且“p∨q”為真命題,則實數m的取值范圍為 .
科目:高中數學 來源: 題型:
【題目】定義在R上的函數f(x)的圖象關于點(﹣ ,0)成中心對稱,且對任意的實數x都有
,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是定義在R上的奇函數,當x≥0時,f(x)=x+x2 .
(1)求x<0時,f(x)的解析式;
(2)問是否存在這樣的非負數a,b,當x∈[a,b]時,f(x)的值域為[4a﹣2,6b﹣6]?若存在,求出所有的a,b值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a、b、c分別是△ABC的三個內角A、B、C的對邊.
(1)若△ABC面積S△ABC= ,c=2,A=60°,求a、b的值;
(2)若a=ccosB,且b=csinA,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數f(x),若在定義域內存在實數x,滿足f(﹣x)=﹣f(x),則稱f(x)為“局部奇函數”. (I) 已知二次函數f(x)=ax2+2bx﹣3a(a,b∈R),試判斷f(x)是否為“局部奇函數”?并說明理由;
(II) 設f(x)=2x+m﹣1是定義在[﹣1,2]上的“局部奇函數”,求實數m的取值范圍;
(III) 設f(x)=4x﹣m2x+1+m2﹣3,若f(x)不是定義域R上的“局部奇函數”,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓C:x2+y2﹣4x﹣14y+45=0及點Q(﹣2,3).
(1)若M為圓C上任一點,求|MQ|的最大值和最小值;
(2)若實數m,n滿足m2+n2﹣4m﹣14n+45=0,求k= 的最大值和最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,∠APB=∠BPC=∠APC=90°,O在△ABC內,∠OPC=45°,∠OPA=60°,則∠OPB的余弦值為( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com