【題目】定義在R上的函數f(x)的圖象關于點(﹣ ,0)成中心對稱,且對任意的實數x都有
,f(﹣1)=1,f(0)=﹣2,則f(1)+f(2)++f(2 017)=( )
A.0
B.﹣2
C.1
D.﹣4
【答案】C
【解析】解:由f(x)=﹣f(x+ )得f(x+
)=﹣f(x),
∴f(x+3)=﹣f(x+ )=f(x),即函數的周期為3,
又f(﹣1)=1,∴f(2)=f(﹣1+3)=f(﹣1)=1,
且f( )=﹣f(﹣1)=﹣1,
∵函數圖象關于點( ,0)呈中心對稱,
∴f(x)+f(﹣x﹣ )=0,則f(x)=﹣f(﹣x﹣
),
∴f(1)=﹣f(﹣ )=﹣f(
)=1,
∵f(0)=﹣2,∴f(3)=f(0)=﹣2,
則f(1)+f(2)+f(3)=1+1﹣2=0
∴f(1)+f(2)++f(2017)=f(1)=1,
故選C.
根據f(x)=﹣f(x+ )求出函數的周期,由函數的圖象的對稱中心列出方程,由條件、周期性、對稱性求出f(1)、f(2)、f(3)的值,由周期性求出答案.
科目:高中數學 來源: 題型:
【題目】設函數 ,其中0<ω<2; (Ⅰ)若f(x)的最小正周期為π,求f(x)的單調增區間;
(Ⅱ)若函數f(x)的圖象的一條對稱軸為 ,求ω的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若將函數y=2sin2x的圖象向左平移 個單位長度,則平移后的圖象的對稱軸為( )
A.x= ﹣
(k∈Z)
B.x= +
(k∈Z)
C.x= ﹣
(k∈Z)
D.x= +
(k∈Z)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖在三棱柱ABC﹣A1B1C1中,已知AB⊥側面BB1C1C,BC= ,AB=CC1=2,∠BCC1=
,點E在棱BB1上.
(1)求C1B的長,并證明C1B⊥平面ABC;
(2)若BE=λBB1 , 試確定λ的值,使得二面角A﹣C1E﹣C的余弦值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a∈R,函數f(x)=x2﹣2ax+5.
(1)若a>1,且函數f(x)的定義域和值域均為[1,a],求實數a的值;
(2)若不等式x|f(x)﹣x2|≤1對x∈[ ,
]恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax2+bx在x=1處取得極值2.
(1)求f(x)的解析式;
(2)若(m+3)x﹣x2ex+2x2≤f(x)對于任意的x∈(0,+∞)成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知側棱垂直底面的三棱柱ABC﹣A1B1C1中,AC=3,AB=5,BC=4,點D是AB的中點.
(1)求證:AC⊥BC;
(2)求證:AC1∥平面CDB1 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知命題p:x∈R,x2+1>m;命題q:指數函數f(x)=(3﹣m)x是增函數.若“p∧q”為假命題且“p∨q”為真命題,則實數m的取值范圍為 .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com